基于C-D生产函数模型的我国建筑业产出影响因素研究
1 引言
建筑业是关乎国计民生的重要行业,随着我国经济实力的不断增强,建筑业在国民经济中的地位也不断提高,成为国民经济的支柱产业之一。据国家统计局数据显示,2017年我国国内生产总值827121.7亿元,同比增长11.23%,全年全社会建筑业实现增加值55689.0亿元,同比增长12.05%,增速高于国内生产总值增速0.82个百分点,有力推动我国国民经济的增长及社会全面发展。建筑业产出作为衡量建筑业发展的指标之一,受到越来越多学者的关注,如何正确认识这一指标的变化,进而研究影响该指标的各种因素,对建筑业整体的发展有一定宏观指导价值。
本文在收集统计数据的基础上,依据柯布-道格拉斯(Cobb-Douglas)生产函数模型,利用Stata22.0软件对我国建筑业资本、劳动投入与总产出的关系进行实证研究,并引入社会综合技术进步因素分析各影响因素对于建筑业经济增长的贡献,对合理评价建筑业经济增长质量和推进建筑业经济增长方式的转变具有重要的理论意义和实践价值,并在此基础上针对建筑业现存不足提出未来的发展建议,以期为相关管理部门和企业进行决策提供数据参考,同时也为研究该领域的学者提供借鉴。
2 文献回顾与研究假设
建筑业的产出问题,一直受到学者的关注。笔者通过对相关文献的梳理,分析总结了学者们的研究成果。首先,具有代表性的是一些学者以具体地区为研究对象,通过对某地区时间序列数据的分析,讨论该地区建筑业生产总值的影响因素。崔秀敏(2012)以河南省为例,基于时间序列数据对河南省建筑业经济增长的主要影响因素及其贡献率进行分析,该学者的研究认为河南省建筑业产出主要依靠投入要素的推动。郭庆军和王慧(2016)使用索洛余值法,对陕西省建筑业2001~2014年的建筑业相关数据进行研究,并利用SPSS19.0软件进行实证分析,得出资本和劳动力投入对陕西省建筑业总产值增长贡献率最大,而科技进步的影响不突出。
其次,还有一部分学者站在全国建筑业视角下对建筑业产出因素进行分析评价。
从上述学者的研究中可见,建筑业在突飞猛进发展的同时离不开资本、劳动力投入等因素的影响。根据经济学相关理论一般认为资本投入是影响建筑业产出值的重要因素,在经济发展势态良好的大环境下,建筑行业的固定资产投入逐年递增。且由于建筑行业的环境复杂,建筑工程项目不断增多,建筑行业的劳动力投入也不断增加。同时,与发达国家相比,我国建筑业仍属于劳动密集型产业,在从业人员的社会劳动生产率达到既定水平以前,建筑业从业人员数量的增加依然是建筑业总产值赖以发展的重要因素。
综上所述,本文提出如下假设:
H1:资本投入对建筑业总产出有积极影响
H2:劳动力投入对建筑业总产出有积极影响
3 研究设计
3.1 模型构建
生产函数是表达一定技术条件下投入与产出关系的数学模型。柯布—道格拉斯(Cobb-Douglas)生产函数是以劳动和资本为主要生产要素,建立指数关系的生产函数模型。最初是由美国数学家Charles Cobb和经济学家Paul Douglas在共同探讨投入和产出的关系时创造的。C-D生产函数是被用来预测国家或地区的工业系统生产的一种经济数学模型,是经济学中使用最广泛的一种生产函数形式。
本文将C-D生产函数引入建筑业,测算资本投入和劳动力投入对建筑业总产值的影响,并建立计量模型:

其中,Q表示建筑业产出,A表示社会综合技术水平,K表示资本投入,L表示劳动力投入,α表示资本要素的产出弹性,β表示劳动力要素的产出弹性,满足0≤α≤1, 0≤β≤1,α+β>1表示规模报酬递增,α+β<1表示规模报酬不变、α+β=1表示规模报酬递减。
为了减少数据潜在异方差的影响,在计算时对变量数据取自然对数,得:

对取对数后的(2)式求导,可得其增量形式:

公式(4)中各项影响因素的投入与总产出之比的百分数即为技术进步、资本投入和劳动力投入三个因素分别对建筑业产出增长的贡献率,公式分别为:
技术进步贡献率:Ea=a/y×100%(5)
资本投入贡献率:Ek=αk/y×100%(6)
劳动力投入贡献率:El=βl/y×100% (7)
由于技术进步、资本投入和劳动力投入在一定经济条件下对建筑业产出有综合影响, 因此 (5) (6) (7) 式仅作为衡量三个因素对建筑业产出贡献大小的依据。
3.2 变量选取与数据来源
本文参考国内外众多学者有关建筑业发展影响因素研究成果的同时,兼顾样本数据的可获得性以及指标的整体代表性,在此基础上从宏观经济角度定量分析我国建筑业发展的影响因素,选取我国建筑业总产出作为被解释变量,选取资本投入、劳动力投入作为解释变量。
一般可以选择建筑业总产值、建筑业产出增加值或者建筑业净产值作为衡量建筑业产出的指标。其中,建筑业总产值是以货币形式表现的建筑安装企业在一定时期内生产的建筑业产品的总和,比较全面地反映了建筑业的产出,因此本文选用建筑业总产值作为衡量建筑业产出的指标。资本投入通常是指行业生产时所投入的货币量的总量,理论上认为最为理想的数据是采用用物质资本的服务流量作为资本投入的测量,但是实际上很难测量。而表现建造和购置固定资产活动的工作量的建筑业固定资产净值则是以货币形式表现的,考虑到我国各省数据的可获得性,笔者采用建筑业每年的固定资产净值作为资本投入的代替变量。理论上的劳动投入应该是一定时期内要素提供的“服务流量”,由于建筑业从业人数能够简明直接地体现劳动投入量的规模,数据可得且不存在价格因素影响的问题,故本文选取建筑业从业人员数量作为劳动投入的指标。
本文选取的2017年我国31个省、自治区、直辖市的建筑业统计数据来自《中国统计年鉴》(2018)和《中国建筑业统计年鉴》(2018),各参数数据采用统计年鉴中规定的指标含义,包括建筑业总产值、建筑业固定资产净值、建筑业企业从业人数。
4 实证研究
4.1 描述性统计
各变量描述性统计见表1,标准差结果显示各省市自治区的建筑业总产值离散程度较大,其中建筑业总产值最高的地区高达27596.71亿元,是平均总产值的4倍左右,而总产值最低的地区仅有147.92亿元,不足平均总产值的1/46。此外,不同地区的资本投入与劳动力投入也存在一定的差异。
4.2 相关性分析
相关系数结果显示,建筑业总产出与资本投入、劳动力投入呈高度正相关关系,资本投入与劳动力投入之间存在较高的相关性。表明本文构建的模型可以较好地模拟三者之间的关系,也验证了本文提出的假设基本成立。
4.3 模型回归分析
利用OLS(普通最小二乘法)对模型进行参数估计,得到回归结果如下:
R2值为0.9533,调整后的R2值为0.9500,表明模型整体的拟合度较高,解释变量对被解释变量的解释能力很强。R2与调整后的R2值相差很小,表明拟合度受自变量个数与样本规模之比的影响较小,样本数量的选择适当。F值为285.75,其伴随概率为0.000,远远小于5%,因此该模型具有统计学意义。
从表3中可以看出,建筑业资本投入与劳动力投入的P值均小于0.05,故拒绝原假设,即自变量对因变量有较高的显著性,因此认为资本投入与劳动力投入这两个因素是影响建筑业总产值的主要因素。将系数值带入式(2)中可得:

进一步可计算出C-D生产函数为:

从(3)式中可以看出2017年我国建筑业产出对投入资本的弹性是0.3519096,也就是说,每增加1%的资本投入,就会相应增加0.3519096%的产出;对于投入劳动力的弹性是0.6605475,说明每增加1%的建筑业从业人员,就会相应增加0.6605475%的产出。这说明劳动力的变化对产出的影响力要显著大于资本的变化对产出的影响力。另外,α+β=0.3519096+0.6605475=1.0124571>1,可见我国建筑业各系统呈现略微的规模报酬递增的形态。
4.4 计量模型的检验
由于变量间的相关系数较高,可能存在多重共线性,因此首先对计量模型进行多重共线性检验。利用方差膨胀因子法,求得资本投入与劳动力投入的VIF值均为5.2<10,因此模型不存在多重共线性。
其次,检验模型是否存在异方差。残差和拟合值之间的散点图1显示散点并非在0左右波动,可能存在异方差。
对模型进行怀特检验,得到P值为0.038<0.05,故拒绝原假设,该模型存在异方差。利用WLS(加权最小二乘法)对异方差进行处理,对处理后的模型进行BP检验,P值为0.1403,因此不存在异方差。得到新的回归结果如表4所示:
从加权最小二乘法的结果来看,检验整个方程显著性的P值(Prob>F)仍为0.0000,说明这个回归方程是高度显著的,且每个变量的P值(P>|t|)均为0.000,可以看出资本投入与劳动力投入都是影响建筑业总产出的因素。将消除异方差后求得的系数值带入式(2)中可得:

进一步可计算出C-D生产函数为:

由于0≤α≤1, 0≤β≤1,且α+β=0.4053321+0.6124601=1.0177922>1,说明我国建筑业正处于小幅度规模报酬递增的阶段。同时,变量系数均大于0,说明资本投入、劳动力投入对我国建筑业总产值均有积极影响,原假设H1、H2均成立。
根据《中国统计年鉴》(2017)和《中国统计年鉴》(2018)中数据通过计算可得2017年我国建筑业总产出、资本投入以及劳动力投入的同比增长率分别为10.53%、4.07%、6.66%。
根据公式(4)可得我国建筑业技术进步的增长率为:
a=y-αk-βl=4.8%
进而可得建筑业总产出中技术进步、资本投入、劳动力投入的贡献率分别为:
技术进步贡献率:Ea=a/y×100%=0.048/0.1053×100%=45.58%
资本投入贡献率:Ek=αk/y×100%=0.405×0.0407/0.1053×100%=15.65%
劳动力投入贡献率:El=βl/y×100%=0.6125×0.06660.1053×100%=38.77%
以上结果表明,中国建筑业的发展总体上呈现一种较好、较快的发展势头。但技术进步较上一年度仅增长4.07%,依旧有待提高。与以往学者的研究结果不同的是:技术进步贡献率在建筑业总产出的诸多影响因素中已占据重要位置,高达45.58。而资本投入的贡献率仅为15.65%,劳动力投入的贡献率居中,为38.77%。由此可见近年来我国建筑业产出的提高已不再是完全依靠要素的投入,而是向提高产业资源的利用效率和生产水平方向转变。
5 结论与建议
本文结合我国经济发展势态以及建筑业领域的特殊性,通过选择建筑业固定资产净值、建筑业从业人数这两个指标来说明我国建筑业总产值的影响因素,并使用Stata22.0软件证实了上述影响因素与我国建筑业总产出之间的紧密关系,同时引入社会综合技术水平因素进行研究,从研究结果中可以得到以下结论:
(1)与资本投入影响相比,劳动力投入对我国建筑业产出的影响更大。建筑业是个复杂的行业,在进行勘察、设计、施工活动时都需要大量的劳动力,其生产活动又不同于规范化程度高的制造业,每个项目都有各自的特点,这就决定了在未来一段时间内建筑业仍然属于劳动密集型行业。在未来的发展中,不能仅仅依靠劳动力人数的增加来促进产出,要提高劳动生产效率,积极将人工智能技术如BIM引入并广泛应用于建筑业,积极开发新技术,吸引高端专业人才,并构建梯度人才队伍,充分发挥高端人才的引领作用、复合型骨干人才的支撑作用、新型产业工人的基石作用。同时加强对建筑业各个层次从业人员的培训,提高其各自的管控能力、管理能力以及业务能力。
(2)我国建筑业处于规模报酬微增长阶段。完成一个建筑工程项目需要投入大量的人力物力财力,而建筑行业中的中小型公司各项资源均有限的问题普遍存在,导致他们没有能力同时承接多个项目。还有一些承包商资质等条件不足,导致在施工过程中非正常终止项目,形成“烂尾楼”。从诸多原因来看,我国建筑业仅能达到规模报酬微增长的阶段,产业结构亟待优化升级。就目前形势来看,建筑业会持续以中高速度发展,政府应积极加强引导,规范建筑市场准入制度,为建筑行业的健康发展提供良好环境,同时还应引导企业围绕市场需求,将资本市场、建筑产品开发等有机结合,提升产业层次。各企业也应根据自身情况调整产业结构,优化企业管理结构,推进建筑业的规模经济,在主业基础上进行相关多元化,形成新的业务发展模式,积极促进产业结构优化升级。
(3)我国建筑业逐渐走上内涵式发展道路,由粗放型向集约型转变。在影响我国建筑业发展的各项因素中,技术进步的贡献率较以往研究来看有了显著提高,超过资本投入和劳动力投入位列第一。在今后的发展中,须继续提高科技进步的贡献率,转变建筑业传统发展方式,实现产业发展向依靠科技进步和管理创新转变,促进建筑业与其他产业的融合,寻找其新的经济增长点,以提高建筑业的经营层次和附加值,使我国建筑业的经济增长从高速发展向高质量发展转变。
[2] Yang S D. Empirical Study on Factors Influencing the Development of Construction Industry-Based on Anhui Construction[J]. Applied Mechanics&Materials, 2012, 193-194:1300-1306.
[3] Yuan C, Liu B, Shen Y, et al. Spatial analysis of change trend and influencing factors of total factor productivity in China’s regional construction industry[J]. Applied Economics, 2017 (2) :1-20.
[4]段宗志,曹家玮,杨苏.基于主成分回归的安徽建筑业经济增长影响因素研究[J].安徽建筑大学学报,2017 (6) :63-68.
[5]董宇晴,魏玉嫔,王维国,刘德海.国际金融危机对中国建筑业产出影响的实证分析[J].科技管理研究,2010 (19) :72-75.
[6]杨德钦,陈丹,李红艳,陈义超,张静.基于主成分分析的我国建筑业区域发展影响因素研究[J].建筑经济,2017 (9) :14-18.
[7]梁飞银.我国建筑业总产值影响因素分析[J].赤峰学院学报(自然科学版),2017 (12) :78-80.
[8]王崇崇,李慧宗.建筑业增加值影响因素的实证分析[J].黑龙江工业学院学报(综合版),2018 (10) :81-84.
[9]范建双,虞晓芬.区域建筑业技术效率的影响因素及趋同性分析:基于两种不同假设下的实证检验[J].管理评论,2014 (8) :82-89.