基于湍流-布朗效应的焊接气溶胶运动特征数值模拟研究

作者:李铖骏 王汉青 孟德雨 王民强
单位:中南林业科技大学 南华大学 中国核工业二三建设有限公司
摘要:为了探究手工电弧焊接气溶胶颗粒的运动轨迹和扩散分布规律,根据气溶胶动力学、等离子体流动力学和计算流体力学原理,结合湍流流动和颗粒物布朗效应,建立了等离子体-热空气-颗粒物动量、能量耦合的焊接气溶胶颗粒扩散数学模型,并通过数值模拟探究了焊条夹角及颗粒物粒径对焊接气溶胶运动状态及水平、竖直分布特征的影响。研究结果表明:焊条夹角对于焊接颗粒物的初始位置分布及运动轨迹具有重要的影响,颗粒物产生的区域将向着背离焊条倾斜方向偏移,这一偏移将随着焊条与平面夹角的减小而增大;在焊接亚微米气溶胶颗粒的自由扩散过程中,颗粒的扩散分布与粒径密切相关,对于小粒径颗粒物,特别是0.1μm的超细颗粒物,在布朗力的作用下,颗粒物的水平距离原点矩D>75 mm,而对于粒径在0.5μm以上的较大颗粒物,其D<15 mm。说明粒径较小的颗粒物扩散性更强,分布更为广泛,由于分子滑移的作用,气流对超细颗粒物的拖曳效应下降,小粒径颗粒物的运动轨迹更易与气流方向发生偏离。
关键词:焊接气溶胶颗粒物分布规律焊接电弧焊条夹角数值模拟
作者简介:李铖骏,男,1990年生,博士研究生,讲师;*王汉青(通信作者)410004湖南省长沙市韶山南路498号,E-mail:hqwang2011@126.com;
基金:国家自然科学基金联合基金项目(编号:U1867221);湖南省教育厅优秀青年项目(编号:22B0269);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 蒋仲安,陈举师,温昊峰.气溶胶力学及应用[M].北京:冶金工业出版社,2018:22-35.

[2] LEHNERT M,HOFFMEYER F,GAWRYCH K,et al.Effects of exposure to welding fume on lung function:results from the German WELDOX study[J].Advances in experimental medicine and biology,2015,834:1-13.

[3] STRAIF K,BENBRAHIM-TALLAA L,BAAN R,et al.A review of human carcinogens:part C:metals,arsenic,dusts,and fibres[J].Lancet oncol,2009,10(5):1470-2045.

[4] DAVISON A.Cadmium fume inhalation and emphysema[J].Lancet,1988,331(8587):663-667.

[5] WANG H Q,HUANG C H,LIU D,et al.Fume transports in a high rise industrial welding hall with displacement ventilation system and individual ventilation units[J].Building and environment,2012,52(6):119-128.

[6] 王沨枫,刘志强,VAN TREECK C,等.分层空调下高大焊接厂房双扩散对流[J].中南大学学报(自然科学版),2016,47(4):1447-1458.

[7] WANG F F,LIU Z Q,VAN TREECK C,et al.Heat and hazardous contaminant transports in ventilated high-rise industrial halls[J].Journal of Central South University,2015,22(6):2106-2118.

[8] 来璟涛.工业厂房局部排风气流流场特性及逃逸粉尘控制策略研究[D].西安:西安建筑科技大学,2013:65-66.

[9] 朱建强.焊接烟尘扩散过程模拟及整流罩优化研究[D].哈尔滨:哈尔滨理工大学,2017:62-63.

[10] KROMHOUT H V R,KNOLL B.Determinants of exposure to welding fumes:lessons learned from a database covering a 20-year period[C]∥Exposure Assessment in a Changing Environment,2004:10-15.

[11] FLYNN M R,SUSI P.Local exhaust ventilation for the control of welding fumes in the construction industry:a literature review[J].Annals of occupational hygiene,2012,56(7):764-776.

[12] 王怡,刘秋寒,黄艳秋,等.浮射流上方排风罩的捕集效率分析及优化设计[J].环境工程,2015,33(1):90-94.

[13] 任改霞,王怡.局部排风罩的高温尘源捕集效率研究[J].广州大学学报(自然科学版),2010,9(3):76-76.

[14] 张军强,任杰亮,薛铜辉,等.药芯焊丝焊接烟尘的产生机理研究[J].热加工工艺,2017,46(19):188-191.

[15] 卜智翔,施雨湘,彭志方,等.焊接气溶胶喷射速率模型研究[J].材料科学与工艺,2008,16(6):869-871.

[16] NYRENSTEDT G.CFD study of welding fume behaviour[D].Lund:Lund University,2016:52-58.

[17] MURPHY A B.The effects of metal vapour in arc welding[J].Journal of physics d:applied physics,2010,43:1-31.

[18] 华彤文.普通化学原理[M].3版.北京:北京大学出版社,2005:25-28.

[19] NAGHIZADEH-KASHANI Y,CRESSAULT Y,GLEIZES A.Net emission coefficient of air thermal plasmas[J].Journal of physics d:applied physics,2002,35(22):2925-2934.

[20] 陈熙.热等离子体传热与流动[M].北京:科学出版社,2009:20-38.

[21] 王汉青.暖通空调流体流动数值计算方法与应用[M].北京:科学出版社,2013:12-20.

[22] 李铖骏.核岛安全壳受限空间环境控制机理及关键技术研究[D].衡阳:南华大学,2021:23-24.

[23] BOSELLI M,COLOMBO V,GHEDINI E,et al.Dynamic analysis of droplet transfer in gas-metal arc welding:modelling and experiments[J].Plasma sources science and technology,2012,21 (5):055015.

[24] HAIDAR J.The dynamic effects of metal vapour in gas metal arc welding[J].Journal of physics d:applied physics,2010,43:165204.

[25] 夏胜全,区智明,孙晓明.CO2气体保护焊电弧温度场和流场建模与分析[J].焊接学报,2013,34(11):97-100,118.

[26] 邓晶,李要建,王蕊,等.电弧等离子体炉内流动与传热数值模拟[J].工程热物理学报,2010,31(5):879-882.

[27] DUAN M,WANG Y,GAO D,et al.Modeling dispersion mode of high-temperature particles transiently produced from industrial processes[J].Building and environment,2017,126:457-470.

[28] 白振霄.湍流通道内柴油机排气微粒运动特性的研究[D].北京:北京交通大学,2011:21-28.

[29] LI A,AHMADI G.Dispersion and deposition of spherical particles from point sources in a turbulent channel flow[J].Aerosol science and technology,1992,16:209-226.

[30] LONGEST P W,XI J.Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways[J].Aerosol science and technology,2007,41(4):380-397.

[31] CHEN C,ZHAO B.A modified Brownian force for ultrafine particle penetration through building crack modeling[J].Atmospheric environment,2017,170:143-148.

[32] SAFFMAN P G.The lift on a small sphere in a slow shear flow[J].Journal of fluid mechanics,1965,22(2):385-400.

[33] LU H,LU L.Investigation of particle deposition efficiency enhancement in turbulent duct air flow by surface ribs with hybrid-size ribs[J].Indoor and built environment,2016,26(5):608-620.

[34] 施雨湘,刘建军.焊接气溶胶10nm尺度粒子的G-P转变[J].机械工程学报,2003,39(6):31-35.
Numerical simulation of welding aerosol motion characteristics based on turbulence-Brownian effect
Li Chengjun Wang Hanqing Meng Deyu Wang Minqiang
(Central South University of Forestry and Technology University of South China China Nuclear Industry 23 Construction Co., Ltd.)
Abstract: In order to explore the motion trajectory and diffusion distribution of aerosol particles in manual welding arc, a mathematical model of welding aerosol particle diffusion coupled with momentum and energy of plasma, hot air and particles is established according to aerosol dynamics, plasma flow mechanics and computational fluid dynamics, combined with turbulent flow and particle Brownian effect. The influences of electrode inclination angle and particle size on the movement characteristics, horizontal and vertical distribution of welding aerosol are investigated by numerical simulation. The results show that the electrode inclination angle has a great impact on the initial position distribution and motion trajectory of welding particles. The area where the particles are generated will be offset away from the electrode tilt, and this offset increases as the decrease of angle between the electrode and the plane. In the free diffusion process of welding submicron aerosol particles, the diffusion distribution of particles is closely related to the particle size. For small particles, especially for ultra-fine particles of 0.1 μm, under the action of Brownian force, the horizontal distance origin moment of particles is more than 75 mm, while for larger particles with a particle size of more than 0.5 μm, the horizontal distance origin moment is less than 15 mm. It indicates that the particles with smaller size have stronger dispersion and wider distribution. Due to the effect of molecular slip, the drag effect of airflow on ultra-fine particles decreases, and the movement trajectory of particles with smaller size is more likely to deviate from the direction of airflow.
Keywords: welding aerosol; particle; distribution law; welding arc; electrode inclination angle; numerical simulation;
635 0 0
文字:     A-     A+     默认 取消