规模化猪场降温系统研究综述

作者:胡志儒 杨奇志 谭志军 王勇 杨博强
单位:重庆大学 重庆大学建筑规划设计研究总院有限公司
摘要:针对规模化现代养殖模式所带来的一系列问题,分别从冷源型式、末端处理型式和通风型式对猪场降温系统进行了综述:分析了家畜养殖业常见冷源的经济性与运行可靠性,指出了人工冷源在规模化猪场应用的可行性;阐述了常见末端处理型式的降温原理与降温效果;对比了常见末端处理型式对猪舍内湿度的控制能力,并指出规模化猪场应对高温高湿天气的有效办法是降低送风含湿量;对比了不同通风型式之间的差异,并论证了个性化送风相较于全面通风更具有优越性,正压通风优于负压通风。
关键词:规模化猪场降温系统冷源末端处理型式通风型式
作者简介:胡志儒,男,1997年生,在读博士研究生;*王勇,400045重庆市沙坪坝区沙北街83号重庆大学土木工程学院E-mail:wyfree1@126.com;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 康润敏,雷云峰,曾凯,等.规模化猪场不同通风模式下不同类型猪舍内空气细菌气溶胶分布规律的研究[J].畜牧与兽医,2017,49(8):111- 116.

[2] 蒲红州.湿热环境对猪采食行为及生理生化指标影响的研究[D].雅安:四川农业大学,2014:2.

[3] RENAUDEAU D,GOURDINE J L,ST-PIERRE N R.A meta-analysis of the effects of high ambient temperature on growth performance of growing-finishing pigs[J].Journal animal science,2011,89(7):2220- 2230.

[4] 邵燕华.中国南方地区夏季猪舍降温效果的实验研究[D].杭州:浙江大学,2002:18- 20.

[5] 汪葆玥,刘玉良,马静,等.非洲猪瘟:传染源和传播途径研究进展与分析[J].中国动物传染病学报,2020,28(5):103- 110.

[6] DE CARVALHO F H C,WEESENDORP E,QUAK S,et al.Quantification of airborne African swine fever virus after experimental infection[J].Veterinary microbiology,2013,165(3):243- 251.

[7] 黄藏宇,李永明,徐子伟.舍内气态及气载有害物质对猪群健康的影响及其控制技术[J].家畜生态学报,2012,33(2):80- 84.

[8] 陈剑波,韩文儒,程晓亮,等.规模化猪场不同饲养管理模式猪舍空气主要污染物研究[J].养猪,2019(4):73- 76.

[9] XUAN Y M,XIAO F,NIU X F,et al.Research and application of evaporative cooling in China:a review (I)—research[J].Renewable and sustainable energy reviews,2012,16(5):3535- 3546.

[10] 蒲红州,郭宗义,王金勇.湿帘风机降温系统在高温高湿地区猪场降温效果的研究[J].猪业科学,2016,33(6):92- 93.

[11] LAL BASEDIYA A,SAMUEL D V K,BEERA V.Evaporative cooling system for storage of fruits and vegetables—a review[J].Journal of food science and technology,2013,50(3):429- 442.

[12] SAMUEL D G L,NAGENDRA S M S,MAIYA M P.Passive alternatives to mechanical air conditioning of building:a review[J].Building and environment,2013,66:54- 64.

[13] 刘大伟,梁承龙.“地温水空调”使用与地下水资源保护探讨[J].地下水,2009,31(6):42- 43.

[14] BISONIYA T S,KUMAR A,BAREDAR P.Study on calculation models of earth-air heat exchanger systems[J].Journal of energy,2014,2014:1- 15.

[15] KROMMWEH M S,RÖSMANN P,BÜSCHER W.Investigation of heating and cooling potential of a modular housing system for fattening pigs with integrated geothermal heat exchanger[J].Biosystems engineering,2014,121:118- 129.

[16] CUCUMO M,CUCUMO S,MONTORO L,et al.A one-dimensional transient analytical model for earth-to-air heat exchangers,taking into account condensation phenomena and thermal perturbation from the upper free surface as well as around the buried pipes[J].International journal of heat and mass transfer,2008,51(3/4):506- 516.

[17] 马承伟.我国南方地区畜禽舍夏季采用浅地层地道风降温问题的探讨[J].农业工程学报,1997,13(增刊1):180- 183.

[18] 王美芝,刘继军,吴中红,等.地源热泵技术对规模化猪场节能减排的影响[J].农业工程学报,2011,27(4):251- 254.

[19] 吴浩玮,孙小淇,梁博文,等.我国畜禽粪便污染现状及处理与资源化利用分析[J].农业环境科学学报,2020,39(6):1168- 1176.

[20] 王顺.猪粪好氧堆肥产热特征及热能回收产电的研究[D].济南:山东大学,2020:5- 8.

[21] 段小东,林豹,高利琼.地下水用作集中空调冷源的经济性分析[C]//全国暖通空调制冷2008年学术年会资料集,2008:120.

[22] 范学平,马秀力,季明,等.地源热泵技术经济性分析[J].建设科技,2010(18):56- 59.

[23] 张利华.山东某农村地下水空调使用的经济性分析[J].节能,2017,36(1):59- 60.

[24] 向瑞骐.重庆市某地道风系统的节能实效研究[D].重庆:重庆大学,2016:90- 94.

[25] MEDOJEVIĈ M,ZONG C,ZHANG G,et al.Izbor i dizajn sistema klimatizacije u objektima za proizvodnju i tov svinja u zavisnosti od uslova toplotne udobnosti:sa fokusom na tropsku klimu[J].Zbornik međunarodnog kongresa o KGH,2017,46(1):326- 335.

[26] 北京市农林科学院畜牧兽医研究所.规模猪场环境参数及环境管理:GB/T 17824.3—2008[S].北京:中国标准出版社,2008:2- 3.

[27] SETHI V P,SHARMA S K.Survey of cooling technologies for worldwide agricultural greenhouse applications[J].Solar energy,2007,81(12):1447- 1459.

[28] 王美芝,赵婉莹,刘继军,等.湿帘-风机系统对北京育肥猪舍的降温效果[J].农业工程学报,2017,33(7):197- 205.

[29] 龚建军,雷云峰,何志平,等.高温季节“湿帘-风机”系统降温效果研究[J].家畜生态学报,2016,37(1):46- 52.

[30] PERIN J,GAGGINI T S,MANICA S,et al.Evaporative snout cooling system on the performance of lactating sows and their litters in a subtropical region[J].Ciência rural,2016,46(2):342- 347.

[31] 吴中红,陈泽鹏,臧建军,等.湿帘冷风机-纤维风管通风系统对妊娠猪猪舍的降温效果[J].农业工程学报,2018,34(18):268- 276.

[32] 朱志平,董红敏,陶秀萍,等.喷雾冷风机对种公猪舍降温效果的试验研究[J].农业工程学报,2004,20(4):238- 241.

[33] HAEUSSERMANN A,HARTUNG E,JUNGBLUTH T,et al.Cooling effects and evaporation characteristics of fogging systems in an experimental piggery[J].Biosystems engineering,2007,97(3):395- 405.

[34] ARBEL A,BARAK M,SHKLYAR A.Combination of forced ventilation and fogging systems for cooling greenhouses[J].Biosystems engineering,2003,84(1):45- 55.

[35] 董红敏,陶秀萍,刘以连,等.分娩猪舍滴水降温系统的试验研究[J].农业工程学报,1998,14(4):3- 5.

[36] 江龙海,赵松,宁国信.滴水降温与雾化降温对妊娠、哺乳母猪效果观察[J].养猪,2001(3):37.

[37] 王美芝,刘继军,田见晖,等.北京市繁殖猪舍夏季降温技术[J].猪业科学,2012,29(5):60- 63.

[38] SANTAMOURIS M,ARGIRIOU A,VALLINDRAS M.Design and operation of a low energy consumption passive solar agricultural greenhouse[J].Solar energy,1994,52(5):371- 378.

[39] VITT R,WEBER L,ZOLLITSCH W,et al.Modelled performance of energy saving air treatment devices to mitigate heat stress for confined livestock buildings in Central Europe[J].Biosystems engineering,2017,164:85- 97.

[40] 刘镇.封闭式猪舍利用地下自然冷源的防暑降温研究[J].农业机械学报,1987,18(3):63- 70.

[41] SILVA B A N,OLIVEIRA R F M,DONZELE J L,et al.Effect of floor cooling on performance of lactating sows during summer[J].Livestock science,2006,105(1/2/3):176- 184.

[42] SHI Z,LI B,ZHANG X,et al.Using floor cooling as an approach to improve the thermal environment in the sleeping area in an open pig house[J].Biosystems engineering,2006,93(3):359- 364.

[43] BARBARI M,CONTI L.Use of different cooling systems by pregnant sows in experimental pen[J].Biosystems engineering,2009,103(2):239- 244.

[44] SEIDEL D S.Investigation into the effects of temperature probe orientation on the Purdue swine cooling pad[D].Indiana:Purdue University,2017:26- 30.

[45] CABEZON F A,SCHINCKEL A P,STWALLEY R M.Thermal capacity of hog-cooling pad[J].Applied engineering in agriculture,2017,33(6):891- 899.

[46] CABEZÓN F A,SCHINCKEL A P,MARCHANT-FORDE J N,et al.Effect of floor cooling on late lactation sows under acute heat stress[J].Livestock science,2017,206:113- 120.

[47] PANG Z Z,LI B M,XIN H W,et al.Field evaluation of a water-cooled cover for cooling sows in hot and humid climates[J].Biosystems engineering,2011,110(4):413- 420.

[48] PANG Z Z,LI B M,XIN H W,et al.Characterisation of an experimental water-cooled cover for sows[J].Biosystems engineering.2010,105(4):439- 447.

[49] PANG Z Z,LI B M,ZHENG W C,et al.Effects of water-cooled cover on physiological and production parameters of farrowing sows under hot and humid climates[J].International journal of agricultural and biological engineering,2016,9(4):178- 184.

[50] 李伟,李保明,施正香,等.夏季水冷式猪床的降温效果及其对母猪躺卧行为的影响[J].农业工程学报,2011,27(11):242- 246.

[51] 邵燕华,陈志银,崔绍荣.畜舍小气候对猪的影响[J].家畜生态,2002(1):67- 68.

[52] DONG H,TAO X,LIN J,et al.Comparative evaluation of cooling systems for farrowing sows[J].Applied engineering in agriculture,2001,17(1):91.

[53] 谢雨晴,刘潆蔚,王美芝,等.有窗密闭式猪舍水空调技术夏季降温效果[J].家畜生态学报,2015,36(10):49- 55.

[54] SAMER M,ABD E,ELHAY Y.Enhancing the efficiency of evaporative cooling pads for livestock barns and greenhouses by moisture adsorption[J].CIGR journal,2015,17(4):36- 40.

[55] SCHAUBERGER G,HENNIG-PAUKA I,ZOLLITSCH W,et al.Efficacy of adaptation measures to alleviate heat stress in confined livestock buildings in temperate climate zones[J].Biosystems engineering,2020,200:157- 175.

[56] 程琼仪,刘继军,靳薇,等.冷风机-风管对南方开放式牛舍的降温效果[J].农业工程学报,2014,30(8):126- 134.

[57] 陈剑波,武守艳,王树华,等.冬季规模化猪场舍区空气污染物与猪呼吸道病相关性试验研究[J].养猪,2012(6):73- 75.

[58] KWON K,LEE I B,HA T.Identification of key factors for dust generation in a nursery pig house and evaluation of dust reduction efficiency using a CFD technique[J].Biosystems engineering,2016,151:28- 52.

[59] 李修松,叶章颖,李保明,等.不同通风模式对保育猪舍冬季环境的影响[J].农业机械学报,2020,51(3):317- 325.

[60] 穆钰,王美芝,刘继军,等.不同通风方式下猪舍病毒颗粒分布的数值研究[J].农业工程学报,2011,27(增刊1):53- 58.

[61] 刘蕾,杜坤.上海某医院应急发热门诊及负压隔离病房空调通风系统设计[J].暖通空调,2020,50(8):82- 86,74.

[62] 张富强.养殖场中多能源系统应用的可行性研究[D].郑州:郑州大学,2012:44.

[63] 郭宗义,刘良.猪场通风降温设备选型及效果评价[J].畜禽业,2015(9):22- 23.

[64] 胡鸿惠,彭国良,南文金.猪舍空气病原微生物与环境通风的关系研究进展[J].安徽农业科学,2013,41(13):5755- 5757.

[65] 袁月明,孙丽丽,潘世强,等.太阳能猪舍地道通风方式对舍内热环境的影响[J].农业工程学报,2014,30(16):213- 220.
Research review on cooling systems in large-scale pig farms
Hu Zhiru Yang Qizhi Tan Zhijun Wang Yong Yang Boqiang
(Chongqing University General Research Institute of Architecture & Planning Design Co.,Ltd.,Chongqing University)
Abstract: Aiming at a series of problems brought by the large-scale modern breeding mode, the cooling systems of the pig farm are reviewed from the cold source type, the end treatment type and the ventilation type. The economy and operational reliability of common cold sources in livestock breeding are analysed, and the feasibility of artificial cold sources in large-scale pig farms is pointed out. The cooling principle and cooling effect of common end treatment types are explained. The control ability of common end treatment types on the humidity in the pig house is compared, and it is pointed out that the effective way for large-scale pig farms to cope with high temperature and high humidity weather is to reduce the moisture content of supply air. The differences between different ventilation types are compared, and it is demonstrated that personalized supply air is more superior than comprehensive ventilation, and positive pressure ventilation is better than negative pressure ventilation.
Keywords: large-scale pig farm; cooling system; cold source; end treatment type; ventilation type;
530 0 0
文字:     A-     A+     默认 取消