多区模型模拟工具的对比研究

作者:郭嘉闽 刘俊杰 涂岱昕
单位:天津大学 天津大学建筑设计规划研究总院有限公司
摘要:各区域间形成定向气流是避免污染物威胁室内外人员健康的重要措施,利用多区模型可在建筑设计阶段快速预测建筑内多房间的气流流向,为实际工程提供参考。目前实现多区模拟的工具多样化,本文将模拟工具分为传统型多区模拟工具和多领域集成型模拟工具,并对二者进行了总结和对比。结果表明,后者继承和发展了前者的多区模型,且可实现更加真实的通风系统模拟,此外,后者因可扩展性好,较集成后的传统型工具可适用的研究范围更广。因此本文认为多领域集成型模拟工具为未来多区模拟的首选工具。
关键词:多区模型软件对比气流模拟传染病医院生物实验室
作者简介:郭嘉闽,女,1997年生,在读硕士研究生;*刘俊杰,300072天津市南开区卫津路92号天津大学环境科学与工程学院E-mail:jjliu@tju.edu.cn;
基金:国家重点研发计划资助项目“降低洁净空调系统输配和冷热源能耗的关键技术与设备研发”(编号:2018YFC0705202);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] AXLEY J.Multizone airflow modeling in buildings:history and theory[J].HVAC&R research,2007,13(6):907- 928.

[2] EMMERICH S J.Validation of multizone IAQ modeling of residential-scale buildings:a review[G]//ASHRAE.ASHRAE Transactions 2001:part 2.Atlanta:ASHRAE Inc.,2001:619- 628.

[3] LORENZETTI D M.Assessing multizone airflow simulation software[EB/OL].[2021-01-27].https://escholarship.org/uc/item/83j6t4tp.

[4] 王芳,陆亚俊.多区域空气流动网络模型用于室内空气品质和通风模拟研究[J].暖通空调,2002,32(6):44- 46.

[5] BLOMSTERBERG Å,CARLSSON T,SVENSSON C,et al.Air flows in dwellings:simulations and measurements[J].Energy and buildings,1999,30(1):87- 95.

[6] AMARA F,DEPECKER P,ALLARD F.Optibat:a real scale cell in simulated climatic environment for multizone air flow pattern in building[C]//Proceedings 13th AIVC Conference,1992:15- 18.

[7] BASSETT M R.Infiltration and leakage paths in single family houses:a multizone infiltration case study[EB/OL].[2021-01-27].https://www.aivc.org/ resource/ infiltration- and- leakage-paths-single-family-houses-multizone-infiltration-case-study-0.

[8] FEUSTEL H E.COMIS:an international multizone air-flow and contaminant transport model[J].Energy and buildings,1999,30(1):3- 18.

[9] WALTON G N,DOLS W S,WALTON G N.CONTAM 2.1 supplemental user guide and program documentation[EB/OL].[2021-01-27].https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860931.

[10] WALTON G N,WALTON G N.AIRNET:a computer program for building airflow network modeling[M/OL].Gaithersburg:National Institute of Standards and Technology,1989[2021-01-27].https://nvlpubs.nist.gov/ nistpubs/ Legacy/ IR/nistir89-4072.pdf.

[11] FRITZSON P,ENGELSON V.Modelica:a unified object-oriented language for system modeling and simulation[C]//Proceedings of the European Conference on Object-Oriented Programming,1998:67- 90.

[12] WETTER M.Multizone airflow model in Modelica[C]//Proceedings of the 5th International Modelica Conference,2006:431- 440.

[13] MATHWORKS T.MATLAB & Simulink release notes for R2020a[EB/OL].[2021-01-27].https://ww2.mathworks.cn/help/simulink/release-notes.html.

[14] BEHRAVEN A,OBERMAISSER R,NASARI A.Thermal dynamic modeling and simulation of a heating system for a multi-zone office building equipped with demand controlled ventilation using MATLAB/Simulink[C]//Proceedings of the 2017 International Conference on Circuits,System and Simulation (ICCSS),2017:103- 108.

[15] HERRLIN M K.Air-flow studies in multizone buildings:models and applications[M/OL].Sweden:Royal Inst of Technology,Dept of Building Services Engineering,1992[2021-01-27].https://www.elibrary.ru/item.asp?id=6860828.

[16] ASHRAE.2005 ASHRAE handbook:fundamentals[M].Atlanta:ASHRAE Inc.,2005.

[17] WALKER I S,WILSON D J,SHERMAN M H.A comparison of the power law to quadratic formulations for air infiltration calculations[J].Energy and buildings,1998,27(3):293- 299.

[18] RANSY F,GENDEBIEN S,LEMORT V.Description of a Modelica-based thermal building model integrating multi-zone airflows calculation[C/OL]//Proceedings of the 12th REHVA World Congress CLIMA 2016,2016[2021-01-27].https://orbi.uliege.be/bitstream/2268/197478/1/Ransy_Fr%c3%a9d%c3%a9ric_Paper_CLIMA2016_v3.pdf.

[19] WEBER A,KOSCHENZ M,DORER V,et al.TRNFLOW,a new tool for the modeling of heat,air and pollutant transport in buildings within TRNSYS[C]//Proceedings of the 7th IBPSA Conference,2003:1363- 1368.

[20] HILLER M,HOLST S,WELFONDER T,et al.TRNFLOW:integration of the airflow model COMIS into the multizone building model of TRNSYS[EB/OL].[2021-01-27].http://www.trnsys.de/static/3d1056390c1b2394d80e7e3e35516fd8/trnflow_shortinfo_en.pdf.

[21] MCDOWELL T P,EMMERICH S,THORNTON J W,et al.Integration of airflow and energy simulation using CONTAM and TRNSYS[G]//ASHRAE.ASHRAE Transactions 2003:part 2.Atlanta:ASHRAE Inc.,2003:757- 770.

[22] GU L.Airflow network modeling in EnergyPlus[C]// Proceedings of the Building Simulation,2007:10.

[23] CRAWLEY D B,LAWRIE L K,WINKELMANN F C,et al.EnergyPlus:creating a new-generation building energy simulation program[J].Energy and buildings,2001,33(4):319- 331.

[24] DOLS W S,WANG L,EMMERICH S J,et al.Development and application of an updated whole-building coupled thermal,airflow and contaminant transport simulation program (TRNSYS/CONTAM)[J].Journal of building performance simulation,2015,8(5):326- 337.

[25] DOLS W S,EMMERICH S J,POLIDORO B J.Coupling the multizone airflow and contaminant transport software CONTAM with EnergyPlus using co-simulation[J].Building simulation,2016,9(4):469- 479.

[26] WANG L.Coupling of multizone and CFD programs for building airflow and contaminant transport simulations[D/OL].Purdue:Purdue University,2007[2021-01-27].https://www.proquest.com/ openview/92f827a2ad45ee2388d84b2b4d150c24/ 1 pq- origsite=gscholar&cbl=18750.

[27] SCHAELIN A,DORER V,MAAS J V D,et al.Improvement of multizone model predictions by detailed flow path values from CFD calculations[G]//ASHRAE.ASHRAE Transactions 1993:part 2.Atlanta:ASHRAE Inc.,1993:709- 720.

[28] WANG L,CHEN Q.Validation of a coupled multizone-CFD program for building airflow and contaminant transport simulations[J].HVAC&R research,2007,13(2):267- 281.

[29] WANG L L,DOLS W S,CHEN Q.Using CFD capabilities of CONTAM 3.0 for simulating airflow and contaminant transport in an around buildings[J].HVAC&R research,2010,16(6):749- 763.

[30] WANG L,CHEN Q.Applications of a coupled multizone-CFD model to calculate airflow and contaminant dispersion in built environments for emergency management[J].HVAC&R research,2008,14(6):925- 939.

[31] FELGNER F,AGUSTINA S,BOHIGAS R C,et al.Simulation of thermal building behaviour in Modelica[C]//Proceedings of the 2nd International Modelica Conference,2002:154.

[32] KALAGASIDIS A S,WEITZMANN P,NIELSEN T R,et al.The international building physics toolbox in Simulink[J].Energy and buildings,2007,39(6):665- 774.

[33] WETTER M.Modeling of heat transfer in rooms in the Modelica buildings library[EB/OL].[2021-01-27].https://escholarship.org/uc/item/95p4c6c5.

[34] OCHS F,DERMANTZIS G,SIEGELE D,et al.Use of building simulation tools for renovation strategies:a renovation case study[C]//Part of European 7th Framework Programme Project iNSPiRe,2013.

[35] WETTER M,HAUGSTETTER C.Modelica versus TRNSYS:a comparison between an equation-based and a procedural modeling language for building energy simulation[C]//Proceedings of Simbuild,2006.

[36] NOUIDUI T,WETTER M,ZUO W.Functional mock-up unit for co-simulation import in EnergyPlus[J].Journal of building performance simulation,2014,7(3):192- 202.

[37] VISEK E,MAZZRELLA L,MOTTA M.Performance analysis of a solar cooling system using self tuning fuzzy-PID control with TRNSYS[J].Energy procedia,2014,57:2609- 2618.

[38] SUDHAKAR K,JENKINS M S,MANGAL S,et al.Modelling of a solar desiccant cooling system using a TRNSYS-MATLAB co-simulator:a review[J].Journal of building engineering,2019,24:100749.

[39] WETTER M.A Modelica-based model library for building energy and control systems[R].Berkeley:Lawrence Berkeley National Laboratory,2009.

[40] ZUO W,WETTER M,TIAN W,et al.Coupling indoor airflow,HVAC,control and building envelope heat transfer in the Modelica buildings library[J].Journal of building performance simulation,2016,9(4):366- 381.

[41] JORISSEN F,BOYDENS W,HELSEN L.Model implementation and verification of the envelope,HVAC and controller of an office building in Modelica[J].Journal of building performance simulation,2019,12(4):445- 464.

[42] ZUO W,WETTER M,LI D,et al.Coupled simulation of indoor environment,HVAC and control system by using fast fluid dynamics and the Modelica buildings library[C]//Proceedings of ASHRAE/IBPSA-USA Building Simulation Conference,2014:56- 63.

[43] TIAN W,ZUO W,SEVILLA T,et al.Coupled simulation between CFD and multizone models based on Modelica buildings library to study indoor environment control[C]//The 12th International Modelica Conference,2017.

[44] TIAN W,FU Y,WANG Q,et al.Optimization on thermostat location in an office room using the coupled simulation platform in modelica buildings library:a pilot study[C]//Proceedings of the the 4th International Conference on Building Energy and Environment (COBEE2018),2018.
Comparative study of simulation tools for multi-zone model
Guo Jiamin Liu Junjie Tu Daixin
(Tianjin University Tianjin University Research Institute of Architectural Design and Urban Planning Co.,Ltd.)
Abstract: Making the directional airflows between zones is an efficacious measure to avoid contaminants threatening the health of people indoors and outdoors. Using the multi-zone model can predict the airflow in the whole building at the design phase, which can provide suggestions for actual engineering. At present, there are many tools to implement multi-zone simulation. The simulation tools are divided into traditional multi-zone simulation tools and multi-domain integration simulation tools, and they are summarized and compared in this study. The results show that the latter inherits and develops the multi-zone model of the former, and can simulate a more realistic ventilation system. In addition, because of its scalability, the latter can be applied to widely research fields. Therefore, the multi-domain integration simulation tool is considered to be a suitable multi-zone simulation tool in the future in this study.
Keywords: multi-zone model; software comparison; airflow simulation; infectious disease hospital; biological laboratory;
473 0 0
文字:     A-     A+     默认 取消