街区尺度微气候影响下的垂直绿化热效应研究

作者:姜之点 石邢 杨峰
单位:同济大学 高密度人居环境生态与节能教育部重点实验室
摘要:基于局地气候区(local climate zone, LCZ)背景气象条件,借助ENVI-met和EnergyPlus终端耦合模拟,评估了夏、冬季垂直绿化的降温、增湿和节能效应。结果显示:在热岛效应和相对湿度差异分别为1.4℃和5.3%的微气候影响下,垂直绿化的降温和增湿最大差异分别为0.16℃、1.1%;夏季垂直绿化单日节能量约132~278 W·h/m2(5.7%~11.7%),全年节能量被冬季所增加的能耗部分抵消,节能率仅为3.2%~6.3%,其中92%来自植被遮荫,8%来自降温,而增湿对于节能效应则主要为负面影响(-11%)。研究结果有助于加深对微气候作用下垂直绿化响应机制及节能潜力的理解,为垂直绿化设计应用提供支撑。
关键词:垂直绿化局地气候区LCZ)耦合模拟热效应建筑节能
作者简介:姜之点,男,1993年生,在读博士研究生;*杨峰(通信作者)200092上海市杨浦区四平路1239号同济大学文远楼A109E-mail:yangfeng@tongji.edu.cn;
基金:国家自然科学基金面上项目“长三角高密度城区垂直绿化系统(VGS)空间绩效图谱研究”(编号:52178022);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] MEDL A,STANGL R,FLORINETH F.Vertical greening systems:a review on recent technologies and research advancement[J].Building and environment,2017,125:227- 239.

[2] 史洁,周雨彤,张玉洁,等.垂直人造绿植建筑表皮对室内热环境影响测试研究[J].建筑科学,2022,38(2):160- 170.

[3] HUNTER A M,WILLIAMS N S G,RAYNER J P,et al.Quantifying the thermal performance of green facades:a critical review[J].Ecological engineering,2014,63:102- 113.

[4] WONG N H,TAN A Y K,CHEN Y,et al.Thermal evaluation of vertical greenery systems for building walls[J].Building and environment,2010,45(3):663- 672.

[5] MANSO M,TEOTÓNIO I,SILVA C M,et al.Green roof and green wall benefits and costs:a review of the quantitative evidence[J].Renewable and sustainable energy reviews,2021,135:110111.

[6] CHEN Q Y,LI B F,LIU X H.An experimental evaluation of the living wall system in hot and humid climate[J].Energy and buildings,2013,61:298- 307.

[7] PÉREZ G,COMA J,MARTORELL I,et al.Vertical greenery systems (VGS) for energy saving in buildings:a review[J].Renewable and sustainable energy reviews,2014,39:139- 165.

[8] PÉREZ G,RINCÓN L,VILA A,et al.Green vertical systems for buildings as passive systems for energy savings[J].Applied energy,2011,88(12):4854- 4859.

[9] VAHMANI P,SUN F,HALL A,et al.Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California[J].Environmental research letters,2016,11(12):124027.

[10] MORAKINYO T E,DAHANAYAKE K W D K C,NG E,et al.Temperature and cooling demand reduction by green-roof types in different climates and urban densities:a co-simulation parametric study[J].Energy and buildings,2017,145:226- 237.

[11] ALEXANDRI E,JONES P.Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates[J].Building and environment,2008,43(4):480- 493.

[12] CHING J,MILLS G,FEDEMMA J,et al.WUDAPT:facilitating advanced urban canopy modeling for weather,climate and air quality spplications[C]//94th American Meterological Society Annual Meeting,2014:1- 7.

[13] STEWART I D,OKE T R.Local climate zones for urban temperature studies[J].Bulletin of the American Meteorological Society,2012,93(12):1879- 1900.

[14] 张云伟,顾兆林,周典.城市局部气候分区及其参数化条件下风环境模拟[J].地球环境学报,2016,5(7):480- 486.

[15] 刘琳,刘京,林姚宇,等.多种城市地表形态的局地气候分析[J].建筑科学,2017,33(2):8- 14.

[16] YANG X S,YAO L Y,JIN T,et al.Assessing the thermal behavior of different local climate zones in the Nanjing metropolis,China[J].Building and environment,2018,137:171- 184.

[17] OKE T R,MILLS G,CHRISTEN A,et al.Urban climates[M].Cambridge:Cambridge University Press,2017:254- 268.

[18] 中国气象科学数据中心.中国地面基本气象观测数据[EB/OL].[2022-06-23].http://data.cma.cn/.

[19] 上海市住房和城乡建设管理委员会.2021年上海统计年鉴[EB/OL].[2022-05-15].http://zjw.sh.gov.cn/.

[20] QI F,WANG Y X.A new calculation method for shape coefficient of residential building using Google Earth[J].Energy and buildings,2014,76:72- 80.

[21] MATZARAKIS A,MATUSCHEK O.Sky view factor as a parameter in applied climatology:rapid estimation by the SkyHelios model[J].Meteorologische zeitschrift,2011,20(1):39- 45.

[22] GUO S T,YANG F,JIANG Z D.Thermal environmental effects of vertical greening and building layout in open residential neighbourhood design:a case study in Shanghai[J].Architectural science review,2022,65(1):72- 88.

[23] YANG F,YUAN F,QIAN F,et al.Summertime thermal and energy performance of a double-skin green facade:a case study in Shanghai[J].Sustainable cities and society,2018,39:43- 51.

[24] PENG L,JIANG Z D,YANG X S,et al.Cooling effects of block-scale facade greening and their relationship with urban form[J].Building and environment,2020,169:106552.

[25] YANG X S,PENG L,JIANG Z D,et al.Impact of urban heat island on energy demand in buildings:local climate zones in Nanjing[J].Applied energy,2019,260:114279.

[26] PENG L,JIANG Z D,YANG X S,et al.Energy savings of block-scale facade greening for different urban forms[J].Applied energy,2020,279:115844.

[27] OKE T R.An algorithmic scheme to estimate hourly heat island magnitude[C]//2nd Urban Environment Symposium,1998:2- 6.

[28] TSOKA S,TSIKALOUDAKI A,THEODOSIOU T.Analyzing the ENVI-met microclimate model's performance and assessing cool materials and urban vegetation applications:a review[J].Sustainable cities and society,2018,43:55- 76.

[29] LIU Z X,CHENG W W,JIM C Y,et al.Heat mitigation benefits of urban green and blue infrastructures:a systematic review of modeling techniques,validation and scenario simulation in ENVI-met V4[J].Building and environment,2021,200:107939.

[30] ZHENG Y F,WENG Q H.High spatial- and temporal-resolution anthropogenic heat discharge estimation in Los Angeles County,California[J].Journal of environmental management,2018,206:1274- 1286.

[31] DJEDJIG R,BOZONNET E,BELARBI R.Analysis of thermal effects of vegetated envelopes:integration of a validated model in a building energy simulation program[J].Energy and buildings,2015,86:93- 103.
Thermal effect of vertical greening under influence of block-scale microclimate
Jiang Zhidian Shi Xing Yang Feng
(Tongji University Key Laboratory of Ecology and Energy-Saving Study of Dense Habitat, Ministry of Education)
Abstract: Based on the background meteorological conditions of the local climate zone(LCZ), the study utilizes the ENVI-met and EnergyPlus terminal integrated models to evaluate the cooling, humidification and energy saving effects of vertical greening in summer and winter. The results show that the maximum cooling and humidifying differences of vertical greening are 0.16 ℃ and 1.1%, respectively, under the influence of the microclimate with the heat island effect and relative humidity difference of 1.4 ℃ and 5.3%, respectively. In summer, vertical greening energy saving is about 132 to 278 W·h/m2(5.7% to 11.7%) per day. The annual energy saving is partially offset by the increase in energy consumption in winter, and the energy saving rate is only 3.2% to 6.3%,of which 92% comes from vegetation shading, 8% comes from cooling, and the humidification has a negative impact on energy saving effects(-11%).The research results help to deepen the understanding of the mechanism of vertical greening and its energy saving potential caused by microclimate differences, and provide support for the design and application of vertical greening.
Keywords: vertical greening; local climate zone(LCZ); integrated simulation; thermal effect; building energy saving;
201 0 0
文字:     A-     A+     默认 取消