基于动态接触角对固着液滴蒸发过程影响因素的模拟分析

作者:戎志成 单彦广 雷月霞
单位:上海理工大学
摘要:在综合了动态接触角模型、液滴蒸发冷却效应、空气域的水蒸气扩散及Marangoni效应影响的情况下,使用二维轴对称模型对水平基板上固着液滴的蒸发过程进行了研究,分析了环境因素、基板性质及液滴的热物理性质对液滴蒸发的影响。结果表明:Marangoni流动在液滴蒸发过程中占据主导作用;随着液滴蒸发,液滴内部流速逐渐减小,温度逐渐升高,液滴表面蒸发通量逐渐增大;由于楔形效应,液滴蒸发初期接触线处蒸发通量较小,后期楔形效应消失,该处蒸发通量达到最大值;环境因素也会对液滴蒸发产生影响,相对湿度增大会抑制液滴蒸发,温度升高会促进液滴蒸发;基板过热度增大能显著提高液滴的蒸发速率,而液滴的初始接触角和后退接触角的减小均会提高液滴蒸发速率;通过改变液滴导热系数判断普朗特数(Pr)对液滴蒸发的影响,发现Pr增大会略微降低液滴的蒸发速率。
关键词:固着液滴蒸发冷却接触角环境因素基板性质Marangoni效应传热传质
作者简介:戎志成,男,1995年生,硕士研究生;*单彦广,200093上海市军工路516号上海理工大学,E-mail:shan@usst.edu.cn;
基金:国家自然科学基金资助项目(编号:52176159);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] YANG H,RONG L,LIU X C,et al.Experimental research on spray evaporative cooling system applied to air-cooled chiller condenser[J].Energy reports,2020,6:906- 913.

[2] 鲍玲玲,赵旭,王景刚.喷淋初角对立式喷淋室内传热传质效果的影响[J].暖通空调,2017,47(12):102- 107.

[3] 刘刚,曹阳.蒸发式冷气机性能参数的试验研究[J].暖通空调,2012,42(7):135- 140.

[4] LIM T,HAN S,CHUNG J,et al.Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate[J].International journal of heat and mass transfer,2009,52(1/2):431- 441.

[5] 高超,袁俊杰,曹进军,等.纳米流体液膜蒸发自组装双尺度沉积结构三维模拟[J].物理学报,2019,68 (14):282- 289.

[6] ZHANG H,SHAN Y G,LI L,et al.Modeling the self-assembly of nanoparticles into branched aggregates from a sessile nanofluid droplet[J].Applied thermal engineering,2016,94:650- 656.

[7] 叶欣,单彦广.疏水表面振动液滴模态演化与流场结构的数值模拟[J].物理学报,2021,70 (14):253- 262.

[8] KABI P,CHATTOPADHYAY B,BHATTACHARYYA S,et al.Evaporation-oscillation driven assembly:microtailoring the spatial ordering of particles in sessile droplets[J].Langmuir,2018,34(42):12642- 12652.

[9] QU J,ESCOBAR L,LI J Z,et al.Experimental study of evaporation and crystallization of brine droplets under different temperatures and humidity levels[J].International communications in heat and mass transfer,2020,110:104427.

[10] PRAKASH J,SIKARWAR B.Modeling of sessile droplet evaporation on engineered surfaces[J].Journal of thermal science and engineering applications,2019,11(6):061005.

[11] THONON B,VIDIL R,MARVILLET C.Plate heat exchangers:research and developments[J].Journal of enhanced heat transfer,2017,24(1/2/3/4/5/6):129- 135.

[12] CHAMRA L M,WEBB R L.A review on condensation and evaporation in micro-fin tubes at equal saturation temperatures[J].Journal of enhanced heat transfer,2017,24(1/2/3/4/5/6):399- 409.

[13] PICKNETT R G,BEXON R.The evaporation of sessile or pendant drops in still air[J].Journal of colloid and interface science,1977,61(2):336- 350.

[14] BOURGES C,SHANAHAN M E R.Influence of evaporation on the contact angle of water drops[J].Comptes rendus-academie des sciences paris serie 2,1993,316(3):311- 316.

[15] POPOV Y O.Evaporative deposition patterns:spatial dimensions of the deposit[J].Physical review E,2005,71(3):036313.

[16] DUNN G J,WILSON S K,DUFFY B R,et al.The strong influence of substrate conductivity on droplet evaporation[J].Journal of fluid mechanics,2009,623:329- 351.

[17] SAADA M A,CHIKH S,TADRIST L.Evaporation of a sessile drop with pinned or receding contact line on a substrate with different thermophysical properties[J].International journal of heat and mass transfer,2013,58(1/2):197- 208.

[18] ZHAO F L,LIU Q F,YAN X,et al.Droplet motion and phase change model with two-way coupling[J].Journal of thermal science,2019,28(4):826- 833.

[19] DAVID S,SEFIANE K,TADRIST L.Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops[J].Colloids and surfaces A—physicochemical and engineering aspects,2007,298(1/2):108- 114.

[20] XU W,LEELADHAR R,KANG Y T,et al.Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces[J].Langmuir,2013,29(20):6032- 6041.

[21] DASH S,GARIMELLA S V.Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis[J].Langmuir,2013,29(34):10785- 10795.

[22] PAN Z H,WEIBEL J A,GARIMELLA S V.Transport mechanisms during water droplet evaporation on heated substrates of different wettability[J].International journal of heat and mass transfer,2020,152:119524.

[23] SHEN Y,KANG F,CHENG Y P,et al.Numerical and theoretical analysis of fast evaporating sessile droplets with coupled fields[J].International journal of thermal sciences,2022,172:107284.

[24] 董佰扬,单彦广,翁志浩.基于动态接触角的固着液滴蒸发过程模拟[J].动力工程学报,2020,40(12):1002- 1007.

[25] KHATTAB I S,BANDARKAR F,FAKHREE M A A,et al.Density,viscosity,and surface tension of water plus ethanol mixtures from 293 to 323 K[J].Korean journal of chemical engineering,2012,29(6):812- 817.
Simulation of influencing factors of evaporation progress of sessile droplets based on dynamic contact angle
Rong Zhicheng Shan Yanguang Lei Yuexia
(University of Shanghai for Science and Technology)
Abstract: In the case of integrating the dynamic contact angle model, droplet evaporative cooling effect, vapor diffusion in the air domain and Marangoni effect, the two-dimensional axisymmetric model is used to study the evaporation process of sessile droplets on the horizontal substrate, and the effects of environmental factors, substrate properties and droplet thermophysical properties on droplet evaporation are analysed. The results show that the Marangoni flow plays a dominant role in the droplet evaporation process. As the droplet evaporates, the velocity inside the droplet decreases, the temperature increases, and the evaporation flux on the surface of the droplet increases. Due to the wedge effect, the evaporation flux at the contact line is small at the initial stage of droplet evaporation, and the evaporation flux reaches the maximum at the point where the wedge effect disappears in the later stage. Environmental factors will also affect droplet evaporation. The increase in relative humidity will inhibit the droplet evaporation, and the increase in ambient temperature will promote the droplet evaporation. The increase of substrate superheat can significantly increase the droplet evaporation rate. The decrease of the initial contact angle and receding contact angle of the droplet will increase the droplet evaporation rate. The effect of Prandtl number on the droplet evaporation is judged by changing the thermal conductivity of the droplet, and it is found that the increase of Prandtl number will slightly reduce the droplet evaporation rate.
Keywords: sessile droplet; evaporative cooling; contact angle; environmental factor; substrate property; Marangoni effect; heat and mass transfer;
563 0 0
文字:     A-     A+     默认 取消