变频空气源热泵供暖结霜图谱

作者:倪龙 林木森 魏文哲 李天普
单位:哈尔滨工业大学 寒地城乡人居环境科学与技术工业和信息化部重点实验室 北京工业大学绿色建筑环境与节能技术北京市重点实验室 山东福德新能源设备有限公司
摘要:变频空气源热泵用于建筑供暖时,其转速根据热负荷的变化而调节,改变室外盘管表面与空气的温差,进而影响结霜,使其结霜特性与定频空气源热泵有较大差异。为揭示变频空气源热泵因负荷控制方法不同而导致的结霜差异,本文通过实验建立了变频空气源热泵在严寒地区的结霜图谱,并进一步通过数值模型绘制了实验机组在寒冷地区和夏热冬冷地区供暖运行的结霜图谱,定量研究了热负荷调节对结霜特性的影响。结果表明:变频空气源热泵的结霜临界相对湿度的变化与定频空气源热泵完全相反,其随着室外温度的降低而下降;同一台热泵机组在不同地区供暖时,供暖室外计算温度越低,结霜临界相对湿度越高,同时结霜区域的上下限温度越低;变频空气源热泵机组在哈尔滨、北京和上海供暖时的结霜区域温/湿度范围分别为-26.5~1.0℃/63%~81%、-18.3~3.2℃/59%~72%、-10.1~5.0℃/53%~63%;而当变频机组运行在最高频率后,其结霜表现出与定频机组相同的趋势。
关键词:变频空气源热泵结霜图谱供暖热负荷气候区
作者简介:倪龙,男,1979年生,博士研究生,教授,博士生导师150090哈尔滨市南岗区黄河路73号哈工大寒地楼,E-mail:nilonggn@163.com;
基金:国家自然科学基金资助项目(编号:52278100);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] WEI W,NI L,ZHOU C,et al.Performance analysis of a quasi-two stage compression air source heat pump in severe cold region with a new control strategy[J].Applied thermal engineering,2020,174:115317.

[2] QU M,ZHANG R,CHEN J,et al.Experimental analysis of heat coupling during TES based reverse cycle defrosting method for cascade air source heat pumps[J].Renewable energy,2020,147:35- 42.

[3] 邱君君,张小松,梁彩华.采用两种常见除湿剂的新型无霜空气源热泵系统模拟研究[J].暖通空调,2019,49(4):37- 42.

[4] 沈九兵,李自强,邢子文.空气源热泵系统无霜化及除霜方法概述[J].制冷学报,2019,40(2):85- 94,104.

[5] 赵伟,梁彩华,成赛凤,等.结霜初期超疏水表面液滴生长的规律[J].中南大学学报,2020,50(1):231- 238.

[6] 姚杨,姜益强,马最良.空气源热泵冷热水机组空气侧换热器结霜规律[J].哈尔滨工业大学学报,2002,34(5):660- 662.

[7] 郭宪民,陈轶光,汪伟华,等.室外环境参数对空气源热泵翅片管蒸发器动态结霜特性的影响[J].制冷学报,2006,27(6):29- 33.

[8] SONG M,XIA L,MAO N,et al.An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil[J].Applied energy,2016,164:36- 44.

[9] ZHU J,SUN Y,WANG W,et al.A novel temperature-humidity-time defrosting control method based on a frosting map for air-source heat pumps[J].International journal of refrigeration,2015,54:45- 54.

[10] ADACHI M,INOUE S,AIZAWA T.On the refrigeration cycle property of heat pump air conditioners operating with frost formation[J].Refrigeration,1975,50:818- 820.

[11] 王剑锋,陈光明.空气热源热泵冬季结霜特性研究[J].制冷,1997,58 (1):8- 11.

[12] ZHU J H,SUN Y Y,WANG W,et al.Developing a new frosting map to guide defrosting control for air-source heat pump units[J].Applied thermal engineering,2015,90:782- 791.

[13] PU J,SHEN C,ZHANG C,et al.A semi-experimental method for evaluating frosting performance of air source heat pumps[J].Renewable energy,2021,173:913- 925.

[14] 王洋,江辉民,马最良.增大蒸发器面积对延缓空气源热泵冷热水机组结霜的实验与分析[J].暖通空调,2006,36(7):83- 87.

[15] WEI W,NI L,ZHOU C,et al.Technical,economic and environmental investigation on heating performance of quasi-two stage compression air source heat pump in severe cold region[J].Energy and buildings,2020,233:110152.

[16] WEI W Z,NI L,XU L F,et al.Application characteristics of variable refrigerant flow heat pump system with vapor injection in severe cold region[J].Energy and buildings,2020,211:109798.

[17] 马最良,姚杨,姜益强,等.热泵技术应用理论基础与实践[M].北京:中国建筑工业出版社,2010:17- 44.

[18] WEI W,NI L,LI S,et al.A new frosting map of variable-frequency air source heat pump in severe cold region considering the variation of heating load[J].Renewable energy,2020,161:184- 199.

[19] WEI W,JIN X,DONG Q,et al.Frosting performance variations of variable-frequency air source heat pump in different climatic regions[J].Applied thermal engineering.2023,219:119356.

[20] 中国建筑科学研究院.民用建筑供暖通风与空气调节设计规范:GB 50736—2012[S].北京:中国建筑工业出版社,2012:102.
Frosting map of variable-frequency air-source heat pump for building space heating
Ni Long Lin Musen Wei Wenzhe Li Tianpu
(Harbin Institute of Technology Key Laboratory of Cold Region Urban and Rural Human Settlement Environments Science and Technology, Ministry of Industry and Information Technology Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology Shandong Fude New Energy Equipment Co., Ltd.)
Abstract: When the variable-frequency air-source heat pump(VFASHP) is used for building space heating, its compressor speed is regulated based on the heating load, which changes the temperature difference between the outdoor coil surface and the air, thus affecting the frosting, making its frosting characteristics significantly different from the constant-frequency air-source heat pump(CFASHP). To reveal the frosting difference of VFASHP caused by different load control methods, this paper establishes the frosting map of VFASHP in severe cold zone through experiments, further draws the frosting map of experimental units in cold zone and hot summer and cold winter zone through numerical models, and quantitatively studies the influence of heating load regulation on frosting characteristics. The results show that the change of frosting critical relative humidity of VFASHP is completely opposite to that of CFASHP, which decreases with the decrease of outdoor air temperature. When the same unit is applied to different areas for space heating, the lower the outdoor calculated temperature for heating is, the higher the frosting critical relative humidity is, and the lower the upper and lower limit temperature of the frosting area is. The temperature and relative humidity range of the frosting area for heating by the unit in Harbin, Beijing and Shanghai are-26.5-1.0 ℃/63%-81%,-18.3-3.2 ℃/59%-72% and-10.1-5.0 ℃/53%-63%, respectively. However, when VFASHP operates at the highest frequency, its frosting shows the same trend as CFASHP.
Keywords: variable frequency; air-source heat pump; frosting map; heating; heating load; climatic zone;
570 0 0
文字:     A-     A+     默认 取消