基于布谷鸟搜索算法的空调水系统管网阻力特性辨识
摘要:空调水系统管网阻力特性辨识是建立准确可靠的管网仿真模型的必要条件,同时也是一个非常复杂的非线性函数优化问题。提出了一种基于布谷鸟搜索算法的空调水系统管网阻力特性辨识方法,该方法基于管网系统多种运行工况下的实测数据,使用布谷鸟搜索算法求解管网阻力特性辨识的目标函数,具有更高的辨识精度。案例研究表明,基于该方法校准后的管网仿真模型模拟所得的各末端流量误差均在3%以内,辨识结果能够满足工程应用的需要。
关键词:空调水系统管网阻力特性辨识布谷鸟搜索算法管网仿真
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] 范钟引,熊帝战,杨玲,等.区域供冷供热系统输配管网管径优化设计研究[J].暖通空调,2021,51(8):50- 55,106.
[2] 周守军.基于管网动态模型的城市集中供热系统参数预测及运行优化研究[D].济南:山东大学,2012:100- 127.
[3] 侯志坚,连之伟.基于阻抗辨识的冷冻水系统水力状况评估[J].流体机械,2008,36(5):84- 87.
[4] XUE P N,JIANG Y,ZHOU Z G,et al.Machine learning-based leakage fault detection for district heating networks[J].Energy and buildings,2020,223:110161.
[5] 秦绪忠,江亿.区域热网管网阻力系数的在线辨识与故障诊断[J].清华大学学报(自然科学版),2000,40(2):81- 85.
[6] 周志刚,邹平华,王晓霞.基于阻抗辨识的复杂空间热网仿真研究[J].暖通空调,2006,36(10):19- 24.
[7] 周志刚,邹平华,谈和平,等.基于遗传蚂蚁混合算法的热网阻力特性辨识[J].哈尔滨工业大学学报,2008,40(11):1761- 1765.
[8] LIU Y X,ZOU P H,HE Z Y.Pipe friction parameters identification method based on Moore-Penrose pseudo-inverse solution[J].Journal of hydraulic engineering,2012,138(1):100- 104.
[9] 王海,王海鹰,周伟国,等.供热管网中管段阻力系数的辨识方法[J].计算物理,2013,30(3):422- 432.
[10] 石晗,田琦,王美萍,等.基于双向递推的枝状供热管网阻抗辨识方法[J].暖通空调,2016,46(7):105- 110.
[11] YANG X S,DEB S.Cuckoo search via Levy flights[C]//Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBic 2009).India,2009:210- 214.
[12] 张晓凤,王秀英.布谷鸟搜索算法综述[J].计算机工程与应用,2018,54(18):8- 16.
[13] IACCA G,DOS SANTOS J V C,DE MELO V V.An improved Jaya optimization algorithm with Lévy flight[J].Expert systems with applications,2021,165:113902.
[14] CIVICIOGLU P,BESDOK E.A conceptual comparison of the cuckoo-search,particle swarm optimization,differential evolution and artificial bee colony algorithms[J].Artificial intelligence review,2011,39(4):1- 32.
[15] 郑洪清,周永权.一种自适应步长布谷鸟搜索算法[J].计算机工程与应用,2013,49(10):68- 71.
[16] 兰少峰,刘升.布谷鸟搜索算法研究综述[J].计算机工程与设计,2015,36(4):1063- 1067.
[17] 孙文娇,高飒,王瑞庆,等.几类元启发式优化算法性能的比较研究[J].数学理论与应用,2016,36(2):118- 124.
[18] 林诗洁,董晨,陈明志,等.新型群智能优化算法综述[J].计算机工程与应用,2018,54(12):1- 9.
[2] 周守军.基于管网动态模型的城市集中供热系统参数预测及运行优化研究[D].济南:山东大学,2012:100- 127.
[3] 侯志坚,连之伟.基于阻抗辨识的冷冻水系统水力状况评估[J].流体机械,2008,36(5):84- 87.
[4] XUE P N,JIANG Y,ZHOU Z G,et al.Machine learning-based leakage fault detection for district heating networks[J].Energy and buildings,2020,223:110161.
[5] 秦绪忠,江亿.区域热网管网阻力系数的在线辨识与故障诊断[J].清华大学学报(自然科学版),2000,40(2):81- 85.
[6] 周志刚,邹平华,王晓霞.基于阻抗辨识的复杂空间热网仿真研究[J].暖通空调,2006,36(10):19- 24.
[7] 周志刚,邹平华,谈和平,等.基于遗传蚂蚁混合算法的热网阻力特性辨识[J].哈尔滨工业大学学报,2008,40(11):1761- 1765.
[8] LIU Y X,ZOU P H,HE Z Y.Pipe friction parameters identification method based on Moore-Penrose pseudo-inverse solution[J].Journal of hydraulic engineering,2012,138(1):100- 104.
[9] 王海,王海鹰,周伟国,等.供热管网中管段阻力系数的辨识方法[J].计算物理,2013,30(3):422- 432.
[10] 石晗,田琦,王美萍,等.基于双向递推的枝状供热管网阻抗辨识方法[J].暖通空调,2016,46(7):105- 110.
[11] YANG X S,DEB S.Cuckoo search via Levy flights[C]//Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBic 2009).India,2009:210- 214.
[12] 张晓凤,王秀英.布谷鸟搜索算法综述[J].计算机工程与应用,2018,54(18):8- 16.
[13] IACCA G,DOS SANTOS J V C,DE MELO V V.An improved Jaya optimization algorithm with Lévy flight[J].Expert systems with applications,2021,165:113902.
[14] CIVICIOGLU P,BESDOK E.A conceptual comparison of the cuckoo-search,particle swarm optimization,differential evolution and artificial bee colony algorithms[J].Artificial intelligence review,2011,39(4):1- 32.
[15] 郑洪清,周永权.一种自适应步长布谷鸟搜索算法[J].计算机工程与应用,2013,49(10):68- 71.
[16] 兰少峰,刘升.布谷鸟搜索算法研究综述[J].计算机工程与设计,2015,36(4):1063- 1067.
[17] 孙文娇,高飒,王瑞庆,等.几类元启发式优化算法性能的比较研究[J].数学理论与应用,2016,36(2):118- 124.
[18] 林诗洁,董晨,陈明志,等.新型群智能优化算法综述[J].计算机工程与应用,2018,54(12):1- 9.
Identification of resistance characteristics for air conditioning water system pipe networks based on cuckoo search algorithm
Abstract: The identification of the resistance characteristics of the pipe network in the air conditioning water system is a necessary condition for establishing an accurate and reliable pipe network simulation model, and it is also a very complex nonlinear function optimization problem. This paper proposes a method for identifying the resistance characteristics of the air conditioning water system based on the cuckoo search algorithm, which is based on the measured data under various operating conditions of the pipe network system, uses the cuckoo search algorithm to solve the objective function of the resistance characteristics of the pipe network, and has higher identification accuracy. The case study shows that the flow error of each end of the pipe network simulation model calibrated based on this method is within 3%, and the identification results can meet the needs of engineering applications.
Keywords: air conditioning water system; pipe network resistance characteristic; identification; cuckoo search algorithm; pipe network simulation;
670
0
0