考虑需求响应的蓄能空调系统灵活用能实验研究

作者:李泽阳 孟庆龙 孙哲 惠悦 王文强
单位:长安大学 陕西省现代建筑设计研究院 中国启源工程设计研究院有限公司
摘要:由于实际建筑冷热负荷存在较大波动,空气源热泵系统经常面临频繁启停,灵活利用储能水罐装置可解决该问题并提升空调系统的运行效率。搭建了可灵活调控储能水罐的空调系统,利用变风量实验平台,对冬夏两季储能水罐作为缓冲装置的运行机理和作为主动储能装置参与需求响应的运行情况进行了研究与分析。通过实验验证了主动储能系统的可行性,从系统水温、能耗及运行费用方面分析了不同策略的运行效果。结果表明:在“大流量、小负荷”的实际运行工况下,储能水罐进出水温差弥补了组合式空调机组进出水温差较小的不足,使空气源热泵的启停次数减少;储能水罐作为主动储能装置在参与需求响应时能为电网提供稳定的削峰负荷,在非需求响应日,可实现罐内能源的有效利用。
关键词:蓄能空调灵活用能空气源热泵主动储能储能水罐需求响应启停次数
作者简介:李泽阳,男,1997年生,在读硕士研究生;*孟庆龙(通信作者)710061陕西省西安市雁塔区长安大学小寨校区建筑工程学院E-mail:mengqinglong@chd.edu.cn;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] CHEN Y,XU P,GU J,et al.Measures to improve energy demand flexibility in buildings for demand response (DR):a review[J].Energy and buildings,2018,177:125- 139.

[2] KLEIN K,HERKEL S,HENNING H M,et al.Load shifting using the heating and cooling system of an office building:quantitative potential evaluation for different flexibility and storage options[J].Applied energy,2017,203:917- 937.

[3] 薛雪,石文星,孙天,等.一种应用于智能电网的建筑电力负荷互动管理策略[J].电力自动化设备,2018,38(12):100- 106.

[4] 何后裕,郭健翔,王永利.面向配电网风电消纳的冰蓄冷空调系统多目标优化策略研究[J].电力系统保护与控制,2019,47 (23):180- 187.

[5] CUI B,GAO D,XIAO F,et al.Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings[J].Applied energy,2017,201:382- 396.

[6] 陆斯悦,及洪泉,徐蕙,等.基于需求侧调峰的农村电采暖设备负荷优化控制策略[J].农业工程学报,2020,36(9):229- 234.

[7] 孙宗宇,李骥,张瑞雪,等.《蓄能空调工程测试与评价技术规程》编制要点及工程测评案例分析[J].暖通空调,2020,50(8):22- 26.

[8] 段德星,孙育英,王伟,等.空气源热泵在绿色建筑中的运行性能实测研究[J].暖通空调,2019,49(8):5- 10.

[9] 孙亚峰,王乃天,肖武.空气源热泵在西安地区的运行策略分析[J].暖通空调,2021,51(10):39- 44.

[10] 方贵银.空调水蓄冷温度分层动态特性研究[J].太阳能学报,1999(3):279- 283.

[11] LI J,LI X,DU R,et al.A new design concept of thermal storage tank for adaptive heat charging in solar heating system[J].Applied thermal engineering,2020,165:114617.

[12] 吴若飒.公共建筑中蓄冷空调系统能效经济性评价与保障体系研究[D].北京:清华大学,2015:183- 194.

[13] LO C C,TSAI S H,LIN B S.Ice storage air-conditioning system simulation with dynamic electricity pricing:a demand response study[J].Energies,2016,9(2):1- 16.

[14] 谭志波,于振峰.深圳某商业项目空调冷源配置方案对比分析[J].暖通空调,2021,51(增刊1):270- 273.

[15] 陈东文,刘育权,李勇,等.用于削减工业园区用电功率峰值的蓄冷空调系统的规划建模与优化[J].电力自动化设备,2017,37(6):94- 100.

[16] CUI B,GAO D,WANG S,et al.Effectiveness and life-cycle cost-benefit analysis of active cold storages for building demand management for smart grid applications[J].Applied energy,2015,147:523- 535.

[17] YAN C,XUE X,WANG S,et al.A novel air-conditioning system for proactive power demand response to smart grid[J].Energy conversion and management,2015,102:239- 246.

[18] PATTEEUW D,BRUNNIX K,ARTECONI A,et al.Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems[J].Applied energy,2015,151:306- 319.

[19] 徐伟,李骥,孙宗宇,等.热泵蓄能耦合供冷供热系统研究综述与展望[J].暖通空调,2020,50(8):1- 7.
Experimental study on flexible energy utilization of energy storage air conditioning system considering demand response
Li Zeyang Meng Qinglong Sun Zhe Xi Yue Wang Wenqiang
(Chang'an University Shaanxi Modern Architectural Design & Research Institute China Qiyuan Engineering Corporation)
Abstract: Due to the large fluctuation of the cooling and heating load of the actual building, the air-source heat pump system is often faced with frequent start and stop. The flexible using energy storage tank can solve this problem and improve the operation efficiency of the air conditioning system. An air conditioning system with flexible regulation of energy storage tank is set up, and the operation mechanism of energy storage tank as buffer device in winter and summer and the operation of participating in demand response as active energy storage device are studied and analysed by using VAV experimental platform. The feasibility of the active energy storage system is verified by experiments, and the operation effects of different strategies are analysed from the aspects of system water temperature, energy consumption and operating cost. The results show that under the actual operating condition of “large flow rate and small load”, the temperature difference between the inlet and outlet of the tank makes up for the small temperature difference deficiency between the inlet and outlet of the combined air handling unit, then the start-stop times of the air-source heat pump are reduced. As an active energy storage device, the tank can provide a stable shedding load when participating in demand response, and effectively utilize the energy on the non-demand response day.
Keywords: energy storage air conditioning; flexible energy utilization; air-source heat pump; active energy storage; energy storage tank; demand response; start-stop time;
641 0 0
文字:     A-     A+     默认 取消