高海拔地区睡眠环境局部供氧方法及其富氧效果分析
摘要:高海拔地区缺氧环境下人体处于低水平氧合状态,由此引发的睡眠障碍等问题严重影响生命健康和工作质量。基于此,研究提出睡眠环境局部弥散供氧方法。通过数值模拟计算与实验验证相结合的方法,揭示了局部供氧条件下人体吸入区氧气浓度的动态变化规律,根据二氧化碳浓度、吹风感等指标剖析了局部风环境的舒适水平。结果表明:采用局部弥散供氧方法,由供氧口到吸入区过程中氧气浓度衰减较小,富氧效果稳定,同时氧气射流有效降低了吸入区的二氧化碳浓度;出口风速在0.20~0.30 m/s范围内时,面部舒适风速比最高,且吹风感低于10%。
关键词:高海拔地区睡眠环境局部弥散供氧富氧效果氧气浓度吹风感吸入区
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] 何兵,李素芝,黄学文.高原环境对睡眠影响的研究进展[J].医学综述,2013,19(3):480- 482.
[2] LUKS A M,VAN MELICK H,BATARSE R R,et al.Room oxygen enrichment improves sleep and subsequent day-time performance at high altitude[J].Respiration physiology,2016,113(3):247- 258.
[3] 杨国萍,刘应书,车晓葵.相对封闭环境增氧的实验研究[J].建筑科学,2008,24(4):27- 31.
[4] 刘应书,祝显强,曹永正,等.弥散供氧流动特性及其富氧效果[J].工程科学学报,2015(10):1370- 1375.
[5] 杨建荣,李先庭,MELIKOV A.个性化送风微环境的实验测试研究[J].暖通空调,2004,34(9):87- 90.
[6] 贺云龙,代彦军,曹广宇.婴儿躺卧场景下个性化送风有效性实验研究[J].暖通空调,2020,50(7):68- 72.
[7] ZHANG Y,LI J Y,SUN H J,et al.Evaluation of different air distribution systems for sleeping spaces in transport vehicles[J].Building and environment,2015,94:665- 675.
[8] MELIKOV A K.Breathing thermal manikins for indoor environment assessment:important characteristics and requirements[J].European journal of applied physiology,2004,92(6):710- 713.
[9] AI Z T,MELIKOV A K.Airborne spread of expiratory droplet nuclei between the occupants of indoor environments:a review[J].Indoor air,2018,28(4):500- 524.
[10] 薛红香,刘学来,李永安,等.睡眠环境热舒适性模型的建立[J].山东建筑大学学报,2008,23(5):402- 405.
[11] ZHANG Y,FENG G,BI Y,et al.Distribution of droplet aerosols generated by mouth coughing and nose breathing in an air-conditioned room[J].Sustainable cities and society,2019,51:101721.
[12] ZHANG T,YIN S,WANG S.Quantify impacted scope of human expired air under different head postures and varying exhalation rates[J].Building and environment,2011,46(10):1928- 1936.
[13] 蔡增基,龙天渝.流体力学泵与风机[M].北京:中国建筑工业出版社,1999:168- 171.
[14] NIU J L,GAO N P,MA P,et al.Experimental study on a chair-based personalized ventilation system[J].Building and environment,2007,42(2):913- 925.
[15] 中国建筑科学研究院.民用建筑供暖通风与空气调节设计规范:GB 50736—2012[S].北京:中国建筑工业出版社,2012:7- 10.
[16] ASHRAE.Thermal environment conditions for human occupancy:ASHRAE 55-2017[S].Atlanta:ASHRAE Inc,2017:41.
[17] LAVERGE J,SPILAK M,NOVOSELAC A.Experimental assessment of the inhalation zone of standing,sitting and sleeping persons[J].Building and environment,2014,82:258- 266.
[18] 同济医科大学环境卫生学教研室.室内空气中二氧化碳卫生标准:GB/T 17094—1997[S].北京:中国标准出版社,1998:1- 8.
[19] LIN Z P,DENG S M.A study on the thermal comfort in sleeping environments in the subtropics—developing a thermal comfort model for sleeping environments[J].Building and environment,2008,43(1):70- 81.
[2] LUKS A M,VAN MELICK H,BATARSE R R,et al.Room oxygen enrichment improves sleep and subsequent day-time performance at high altitude[J].Respiration physiology,2016,113(3):247- 258.
[3] 杨国萍,刘应书,车晓葵.相对封闭环境增氧的实验研究[J].建筑科学,2008,24(4):27- 31.
[4] 刘应书,祝显强,曹永正,等.弥散供氧流动特性及其富氧效果[J].工程科学学报,2015(10):1370- 1375.
[5] 杨建荣,李先庭,MELIKOV A.个性化送风微环境的实验测试研究[J].暖通空调,2004,34(9):87- 90.
[6] 贺云龙,代彦军,曹广宇.婴儿躺卧场景下个性化送风有效性实验研究[J].暖通空调,2020,50(7):68- 72.
[7] ZHANG Y,LI J Y,SUN H J,et al.Evaluation of different air distribution systems for sleeping spaces in transport vehicles[J].Building and environment,2015,94:665- 675.
[8] MELIKOV A K.Breathing thermal manikins for indoor environment assessment:important characteristics and requirements[J].European journal of applied physiology,2004,92(6):710- 713.
[9] AI Z T,MELIKOV A K.Airborne spread of expiratory droplet nuclei between the occupants of indoor environments:a review[J].Indoor air,2018,28(4):500- 524.
[10] 薛红香,刘学来,李永安,等.睡眠环境热舒适性模型的建立[J].山东建筑大学学报,2008,23(5):402- 405.
[11] ZHANG Y,FENG G,BI Y,et al.Distribution of droplet aerosols generated by mouth coughing and nose breathing in an air-conditioned room[J].Sustainable cities and society,2019,51:101721.
[12] ZHANG T,YIN S,WANG S.Quantify impacted scope of human expired air under different head postures and varying exhalation rates[J].Building and environment,2011,46(10):1928- 1936.
[13] 蔡增基,龙天渝.流体力学泵与风机[M].北京:中国建筑工业出版社,1999:168- 171.
[14] NIU J L,GAO N P,MA P,et al.Experimental study on a chair-based personalized ventilation system[J].Building and environment,2007,42(2):913- 925.
[15] 中国建筑科学研究院.民用建筑供暖通风与空气调节设计规范:GB 50736—2012[S].北京:中国建筑工业出版社,2012:7- 10.
[16] ASHRAE.Thermal environment conditions for human occupancy:ASHRAE 55-2017[S].Atlanta:ASHRAE Inc,2017:41.
[17] LAVERGE J,SPILAK M,NOVOSELAC A.Experimental assessment of the inhalation zone of standing,sitting and sleeping persons[J].Building and environment,2014,82:258- 266.
[18] 同济医科大学环境卫生学教研室.室内空气中二氧化碳卫生标准:GB/T 17094—1997[S].北京:中国标准出版社,1998:1- 8.
[19] LIN Z P,DENG S M.A study on the thermal comfort in sleeping environments in the subtropics—developing a thermal comfort model for sleeping environments[J].Building and environment,2008,43(1):70- 81.
Local oxygen supply method and oxygen enrichment effect in sleeping environment at high altitudes
Abstract: The human body is in a low-level oxygenation state under hypoxic environment at high altitudes, and the resulting sleep disorders and other problems seriously affect health and work quality. Therefore, the study proposes a method of local diffuse oxygen supply. Through the method combined numerical simulation calculation with experimental verification, the dynamic change law of oxygen concentration in the inhaled area of human body under the condition of local oxygen supply is revealed, and the comfort level of local wind environment is analysed according to the index of carbon dioxide concentration and blowing sensation. The results show that the oxygen concentration attenuation from the oxygen supply port to the inhalation area is small, the oxygen enrichment effect is stable, and the oxygen jet effectively reduces the carbon dioxide concentration in the inhalation zone. When the outlet wind speed is in the range of 0.20 m/s to 0.30 m/s, the facial-area speed ratio is the highest, and the draft risk is less than 10%.
Keywords: high altitude; sleeping environment; local diffuse oxygen supply; oxygen enrichment effect; oxygen concentration; draft risk; inhalation zone;
655
0
0