山岭隧道衬砌换热器地源热泵能效的影响因素研究

作者:谢勇利 刘晓华 曹诗定 张国柱 李承霖
单位:深圳市综合交通与市政工程设计研究总院有限公司 东南大学
摘要:为了分析山区环境下的隧道衬砌换热器地源热泵能效,建立了隧道衬砌换热器的瞬态传热三维数值计算模型。分析了制冷工况下隧道衬砌换热器地源热泵的运行能效。分析结果表明:地源热泵能效比随着风速的增大先减小后增大;随着围岩导热性的增强而增大,但增大速率逐渐降低;随着围岩初始地温的升高呈线性减小。上述因素敏感性分析结果表明,风速对隧道衬砌换热器地源热泵能效比的影响程度最小,初始地温最大。随着管长的增加,初始地温对地源热泵能效比影响权重逐渐增大,风速和围岩导热系数的影响权重逐渐减小。
关键词:地热能隧道衬砌换热器数值模型能源效率建筑制冷
作者简介:谢勇利,男,1965年生,硕士研究生,教授级高级工程师;*张国柱(通信作者)518003江苏省南京市江宁区东南大学路2号E-mail:zhanggz@seu.edu.cn;
基金:国家自然科学基金资助项目(编号:51778138)
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 陈家威.层状地基中PHC能源管桩的热力耦合特性研究[D].南京:东南大学,2020:1.

[2] TINTI F,BOLDINI D,FERRARI M,et al.Exploitation of geothermal energy using tunnel lining technology in a mountain environment.A feasibility study for the Brenner Base tunnel—BBT[J].Tunnelling and underground space technology,2017,70:182- 203.

[3] BARLA M,DI D A.Energy tunnels:concept and design aspects[J].Underground space,2018,3(4):268- 276.

[4] NICHOLSON D P,CHEN Q,SILVA M D,et al.The design of thermal tunnel energy segments for Crossrail,UK[J].Engineering sustainability,2014,167(3):118- 134.

[5] BIDARMAGHA A,NARSILIO G A.Heat exchange mechanisms in energy tunnel systems[J].Geomechanics for energy and the environment,2018,16:83- 95.

[6] MA C J,DONNA A D,DIAS D,et al.Numerical investigations of the tunnel environment effect on the performance of energy tunnels[J].Renewable energy,2021,172:1279- 1292.

[7] BRANDL H.Energy foundations and other thermo-active ground structures[J].Geotechnique,2006,56(2):81- 122.

[8] ADAM D,MARKIEWICZ R.Energy from earth-coupled structures,foundations,tunnels and sewers[J].Geotechnique,2009,59(3):229- 236.

[9] LEE C,PARK S,WON J,et al.Evaluation of thermal performance of energy textile installed in tunnel[J].Renewable energy,2012,42:11- 22.

[10] LEE C,PARK S,CHOI H J,et al.Development of energy textile to use geothermal energy in tunnels[J].Tunnelling and underground space technology,2016,59:105- 113.

[11] ZENG Y,LIU K,ZHOU X,et al.Tunnel temperature fields analysis under the couple effect of convection-conduction in cold regions[J].Applied thermal engineering,2017,120:378- 392.

[12] ZHANG G Z,XIA C C,YANG Y,et al.Experimental study on the thermal performance of tunnel lining ground heat exchangers[J].Energy and buildings,2014,77:149- 157.

[13] ZHANG G Z,GUO Y M,ZHOU Y C,et al.Experimental study on the thermal performance of tunnel lining GHE under groundwater flow[J].Applied thermal engineering,2016,106:784- 795.

[14] 张国柱,张玉强,夏才初,等.利用地温能的隧道加热系统及其施工方法[J].现代隧道技术,2015,52(6):170- 176.

[15] 张国柱,夏才初,孙猛,等.寒区隧道地源热泵型供热系统取热段温度场解析[J].岩石力学与工程学报,2012,31(增刊2):3795- 3802.

[16] ZHANG G Z,XIA C C,SUN M,et al.A new model and analytical solution for the heat conduction of tunnel lining ground heat exchangers[J].Cold regions science and technology,2013,88:59- 66.

[17] ZHANG G Z,XIA C C,ZHAO X,et al.Effect of ventilation on the thermal performance of tunnel lining GHEs[J].Applied thermal engineering,2016,93:416- 424.

[18] BARLA M,DONNA A D,PERINO A.Application of energy tunnels to an urban environment[J].Geothermics,2016,61:104- 113.

[19] OGUNLEYE O,SINGH R M,CECINATO F,et al.Effect of intermittent operation on the thermal efficiency of energy tunnels under varying tunnel air temperature[J].Renewable energy,2020,146:2646- 2658.

[20] 中国建筑科学研究院.民用建筑供暖通风与空气调节设计规范:GB 50736—2012[M].北京:中国建筑工业出版社,2012:150.

[21] ZHANG L F,CHEN J Y,WANG J Q,et al.Estimation of soil and grout thermal properties for ground-coupled heat pump systems:development and application[J].Applied thermal engineering,2018,143:112- 122.

[22] LIU Z J,XU W,ZHAI X,et al.Feasibility and performance study of the hybrid ground-source heat pump system for one office building in Chinese heating dominated areas[J].Renewable energy,2017,101:1131- 1140.

[23] ZHAO X,ZHANG H,LAI H,et al.Temperature field characteristics and influencing factors on frost depth of a highway tunnel in a cold region[J].Cold regions science and technology,2020,179:103141.
Influencing factors of energy efficiency for heat pump coupled with mountain tunnel lining ground heat exchangers
Xie Yongli Liu Xiaohua Cao Shiding Zhang Guozhu Li Chenglin
(Shenzhen Transportation & Municipal Engineering Design & Research Institute Co., Ltd. Southeast University)
Abstract: To investigate the energy efficiency of the heat pump coupled with tunnel lining ground heat exchangers(GHEs) in a mountain environment, a 3 D numerical model is developed to simulate the transient heat transfer of the tunnel lining GHEs. The energy efficiency of the heat pump coupled with tunnel lining GHEs in the cooling mode is evaluated. The results demonstrate that the EER of the ground-source heat pump decreases and then increases with the increase of wind speed. The EER increases with the increase of thermal conductivities of the surrounding rocks, whereas the growth rate decreases gradually. The EER decreases lineally with the increase of initial ground temperature. The results of the sensitivity analysis show that the wind speed has the least influence and the initial ground temperature has the greatest influence on the EER of the ground-source heat pump coupled with tunnel lining GHEs. As the absorber pipe length increases, the weight of the initial ground temperature on the EER increases, while the weights of the wind speed and thermal conductivity of the surrounding rock gradually decrease.
Keywords: geothermal energy; tunnel lining ground heat exchanger; numerical model; energy efficiency; building cooling;
667 0 0
文字:     A-     A+     默认 取消