气候变化下建筑冷负荷分区及应用研究

作者:李红莲 寇雯 吕文
单位:西安建筑科技大学
摘要:在“双碳”目标和气候变暖的背景下,能源转型势在必行。建筑冷负荷分区能直观地反映建筑制冷能耗需求状况,揭示我国不同区域制冷需求的增长差异,为建筑结构能源转型提供导向。而分区的合理性主要取决于分区指标,因此提出了一种采用制冷度时数(CDH)指标的分区方法。首先,基于室外气象参数与室内热舒适温度生成我国历史Ⅰ阶段(1988—2017年)和气候变化情景Ⅱ阶段(2050—2080年)的CDH。其次,采用K-medoids算法在两阶段情景下分别将我国划分为5个建筑冷负荷区,反映地域制冷能耗需求差异。对比分析了两阶段建筑冷负荷分区的变化特征,发现气候变化下我国部分寒冷地区制冷能耗增长最为明显,对太阳能等可再生能源有很强的需求潜力。
关键词:气候变化冷负荷分区指标K-medoids算法制冷度时数CDH)
作者简介:李红莲,女,1980年生,博士研究生,教授,710055陕西省西安市雁塔路13号西安建筑科技大学,E-mail:lihonglian_lhl@163.com;
基金:“十三五”国家重点研发计划项目“建筑节能设计基础参数研究”(编号:2018YFC0704500);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] TIAN C,HUANG G,LU C,et al.Development of enthalpy-based climate indicators for characterizing building cooling and heating energy demand under climate change[J].Renewable and sustainable energy reviews,2021,143:1- 2.

[2] 张彦云.建筑负荷分区方法的研究与实现[D].西安:西安建筑科技大学,2016:1- 3.

[3] 中国建筑科学研究院.建筑气候区划标准:GB 50178—93[S].北京:中国计划出版社,1993:7- 12.

[4] 中国建筑科学研究院.民用建筑热工设计规范:GB 50176—2016[S].北京:中国计划出版社,2016:65- 73.

[5] NOBATE B D.European climate zones and bio-climatic design requirements[S].Brussel:European Commission,2016:20- 21.

[6] BAECHLER M C,WILLIAMSON J,GILBRIDE T,et al.Building America best practices series:volume 7.1:guide to determining climate regions by county[R].[S.l.]:Pacific Northwest National Laboratory & Oak Ridge National Laboratory,2010:2- 3.

[7] 白鲁建.建筑节能设计气候区划方法研究[D].西安:西安建筑科技大学,2019:3- 7.

[8] 杨柳,李昌华,刘加平.典型气象年生成方法及原始气象数据质量分析[J].气象科技,2006,34(5):596- 599.

[9] 李红莲,杨柳,侯立强,等.建筑能耗模拟用典型年气象参数的选取方法[J].太阳能学报,2016,37(9):2409- 2411.

[10] 黄金,李红莲,吕凯琳.一种新的典型气象年权重因子构建方法[J].暖通空调,2021,51(2):73- 78.

[11] BELCHER S E,HACKER J N,POWELL D S.Constructing design weather data for future climates[J].Building service engineering,2005,26:49- 61.

[12] FERRARI S,ZANOTTO V.Adaptive comfort:analysis and application of the main indices[J].Building and environment,2012,49(1):25- 32.

[13] HUMPHREYS M.Outdoor temperatures and comfort indoors[J].Building research practice,1978,6(2):91- 92.

[14] ASHRAE.Thermal environmental conditions for human occupancy:ANSI/ASHRAE Standard 55-2004[S].Atlanta:ASHRAE Inc.,2004:2- 3.

[15] CEN.Indoor environmental input parameters for design and assessment of energy performance of buildings.Addressing indoor air quality,thermal environment,lighting and acoustics:EN 15251:2007[S].Brussels:CEN,2007:4- 5.

[16] 茅艳.人体热舒适气候适应性研究[D].西安:西安建筑科技大学,2007:95- 110.

[17] 韩杰.自然通风环境热舒适模型及其在长江流域的应用研究[D].长沙:湖南大学,2007:85- 99.

[18] 杨柳.建筑气候分析与设计策略研究[D].西安:西安建筑科技大学,2003:41- 74.

[19] PUSAT S,EKMEKÇI Î,AKKOYUNLU M T.Generation of typical meteorological year for different climates of Turkey[J].Renewable energy,2015,75:144- 151.

[20] 中国建筑科学研究院.夏热冬冷地区居住建筑节能设计标准:JGJ 134—2010[S].北京:中国建筑工业出版社,2010:11- 12.

[21] 中国建筑科学研究院,广东省建筑科学研究院.夏热冬暖地区居住建筑节能设计标准:JGJ 75—2012[S].北京:中国建筑工业出版社,2012:63- 68.

[22] 中国建筑科学研究院.公共建筑节能设计标准:GB 50189—2015[S].北京:中国建筑工业出版社,2015:17- 36.

[23] 蔡建南,邓敏,刘启亮,等.面向地学应用的不确定数据聚类算法比较研究[J].地理与地理信息科学,2015,31(6):8- 14.

[24] 徐华.数据挖掘:方法与应用[M].北京:清华大学出版社,2014:117- 137.

[25] DAVIES D L,BOULDIN D W.A cluster separation measure[J].IEEE transactions on pattern analysis and machine intelligence,1979,1(2):224- 227.

[26] 王峥,任毅.我国太阳能资源的利用现状与产业发展[J].资源与产业,2010,12(2):89- 92.

[27] LAZZARIN R.太阳能制冷的应用现状[J].王云鹏,张晓宁,赵国君,译.制冷技术,2021,41(2):9- 10.
Zoning and application of building cooling load under climate change
Li Honglian Kou Wen Lü Wen
(Xi'an University of Architecture and Technology)
Abstract: In the context of dual carbon goals and climate change, energy transition is imperative. Building cooling load zoning can intuitively show the building cooling energy demand, reveal the growth differences in cooling demand in different regions in China and provide guidance for building structural energy transformation. The rationality of zoning mainly depends on the zoning index, so a zoning method using the cooling degree hours(CDH) index is proposed. First, based on outdoor meteorological parameters and indoor thermal comfort temperature, the CDHs of China's historical stage Ⅰ(1988-2017) and climate change scenario stage Ⅱ(2050-2080) are generated. Then, the K-medoids algorithm is used to divide China into five building cooling load zones under the two-stage scenario, reflecting the regional differences in cooling energy demand. The variation characteristics of the two-stage building cooling load zoning are compared and analysed. It is found that the cooling energy consumption in some cold regions of China increases most obviously under climate change, and the future transformation of building energy structure has a strong demand potential for renewable energy such as solar energy.
Keywords: climate change; cooling load; zoning indicator; K-medoids algorithm; cooling degree hours(CDH);
528 0 0
文字:     A-     A+     默认 取消