基于能耗限额的夏热冬冷地区居住建筑节能技术方案

作者: 曹馨匀 喻伟 熊杰 杜晨秋 李楠 姚润明
单位:重庆大学
摘要:基于夏热冬冷地区居住建筑“部分时间、部分空间”的用能模式,以“能耗”“舒适”“经济”为目标,建立了多目标优化算法NSGA-II与多因素决策方法TOPSIS相结合的“多目标优化-多因素决策”模型,可得到3个目标权衡后的推荐技术方案。与现行居住建筑节能设计标准相比,推荐的技术方案可降低全年供暖空调负荷34.7%、延长非供暖空调时间12.5%。同时探讨了其他可行的技术路径,在本文提出的技术方案下,2种路径均能维持人员在室时段、在室空间内室内环境舒适,且可将全年供暖空调能耗控制在能耗限额范围内,为该地区居住建筑的设计和建造提供参考,为相关标准的修订编制提供支撑。
关键词:夏热冬冷地区能耗限额居住建筑多目标优化多因素决策
作者简介:曹馨匀,女,1988年生,在读博士研究生;*姚润明,400045重庆市沙坪坝区重庆大学B区土木工程学院E-mail:r.yao@cqu.edu.cn;
基金:国家重点研发计划项目“长江流域建筑供暖空调解决方案和相应系统”课题一“基于能耗限额的建筑室内热环境定量需求及节能技术路径”(编号:2016YFC0700301);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2017[M].北京:中国建筑工业出版社,2017:4- 8.

[2] 江亿.中国建筑节能理念思辨[M].北京:中国建筑工业出版社,2016:319.

[3] 姚润明.长江流域建筑供暖空调解决方案和相应系统[J].暖通空调,2016,46(10):146- 147.

[4] 姚润明.“十三五”国家重点研发计划项目长江流域建筑供暖空调解决方案及其系统[J].建设科技,2017(10):24- 25.

[5] LIU H,WU Y X,LI B Z,et al.Seasonal variation of thermal sensations in residential buildings in the hot summer and cold winter zone of China[J].Energy and buildings,2017,140:9- 18.

[6] YAO R M,COSTANZO V,LI X Y,et al.The effect of passive measures on thermal comfort and energy conservation.A case study of the hot summer and cold winter climate in the Yangtze River region[J].Journal of building engineering,2018,15:298- 310.

[7] JIANG H C,YAO R M,HAN S Y,et al.How do urban residents use energy for winter heating at home?A large-scale survey in the hot summer and cold winter climate zone in the Yangtze River region[J].Energy and buildings,2020,223:110131.

[8] 徐振坤,李金波,石文星,等.长江流域住宅用空调器使用状态与能耗大数据分析[J].暖通空调,2018,48(8):1- 8,89.

[9] 杜晨秋,邱向伟,李金波,等.长江流域住宅分体式空调全年使用特性分析[J].暖通空调,2022,52(1):66- 74.

[10] YU J H,YANG C Z,TIAN L W,et al.A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China[J].Applied energy,2009,86(11):2520- 2529.

[11] LIU X W,CHEN Y M,GE H,et al.Determination of optimum insulation thickness for building walls with moisture transfer in hot summer and cold winter zone of China[J].Energy and buildings,2015,109:361- 368.

[12] 李峥嵘,曹斌.上海地区间歇式空调建筑夜间通风降温策略[J].暖通空调,2013,43(7):73- 77.

[13] 董凯,赖俊英,钱晓倩,等.夏热冬冷地区居住建筑水平式外遮阳节能效果[J].浙江大学学报(工学版),2015,50(8):1431- 1437.

[14] 贾洪愿,李百战,姚润明,等.探讨长江流域室内热环境营造——基于建筑热过程的分析[J].暖通空调,2019,49(4):1- 11,42.

[15] 喻伟,李百战,李楠,等.重庆地区居住建筑室内热环境的节能调控策略分析[J].暖通空调,2009,39(11):7- 11.

[16] GOU S Q,NIK V,SCARTEZZINI J,et al.Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand[J].Energy and buildings,2018,169:484- 506.

[17] CAO X Y,YAO R M,DING C,et al.Energy-quota-based integrated solutions for heating and cooling of residential buildings in the hot summer and cold winter zone in China[J].Energy and buildings,2021,236:110767.

[18] 重庆大学,中国建筑科学研究院.民用建筑室内热湿环境评价标准:GB/T 50785—2012[S].北京:中国建筑工业出版社,2012:9- 17.

[19] 龙惟定.建筑节能与建筑能效管理[M].北京:中国建筑工业出版社,2005:80- 85.

[20] BICHIOU Y,KRARTI M.Optimization of envelope and HVAC systems selection for residential buildings[J].Energy and buildings,2011,43(12):3373- 3382.

[21] MOTTET L,SONG J Y,SHORT C A,et al.The hot summer-cold winter region in China:challenges in the low carbon adaptation of residential slab buildings to enhance comfort[J].Energy and buildings,2020,223:110181.

[22] 中国建筑科学研究院.夏热冬冷地区居住建筑节能设计标准:JGJ 134—2010[S].北京:中国建筑工业出版社,2010:9- 10.

[23] 武汉市发展和改革委员会.武汉市民用建筑能耗限额指南[S].武汉:武汉市发展和改革委员会,2014:29.

[24] 王厚华,庄燕燕,吴伟伟.夏热冬冷地区围护结构热工性能节能分析[J].同济大学学报(自然科学版),2010,38(11):1641- 1646,1700.

[25] 喻伟.住宅建筑保障室内(热)环境质量的低能耗策略研究[D].重庆:重庆大学,2011:89- 100.

[26] 何玥儿,丁勇,刘猛.夏热冬冷地区绿色建筑的节能效益[J].土木建筑与环境工程,2018,40(1):113- 121.

[27] BAMBROOK S,SPROUL A,JACOB D.Design optimisation for a low energy home in Sydney[J].Energy and buildings,2011,43(7):1702- 1711.

[28] 人民网.南方城市气温低且为湿冷 8成网友支持集中供暖[EB/OL].[2021-05-10].http://politics.people.com.cn/n/2013/0108/c1001-20124969.html.

[29] 人民日报.南方要不要集中供暖?[EB/OL].[2021-05-10].https://baijiahao.baidu.com/s?id=1649454991063636519&wfr=spider&for=pc.

[30] LI X Y,YAO R M,YU W,et al.Low carbon heating and cooling of residential buildings in cities in the hot summer and cold winter zone—a bottom-up engineering stock modeling approach[J].Journal of cleaner production,2019,220:271- 288.

[31] 清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2013[M].北京:中国建筑工业出版社,2013:125- 139.

[32] 熊杰,姚润明,李百战,等.夏热冬冷地区建筑热工气候区划分方案[J].暖通空调,2019,49(4):12- 18.

[33] LEON Á,DOMINGUEZ S,CAMPANO M,et al.Reducing the energy demand of multi-dwelling units in a mediterranean climate using solar protection elements[J].Energies,2012,5(9):3398- 3424.

[34] CHEN X,YANG H X,ZHANG W L.Simulation-based approach to optimize passively designed buildings:a case study on a typical architectural form in hot and humid climates[J].Renewable and sustainable energy reviews,2018,82:1712- 1725.

[35] SHEN P Y,BRAHAM W,YI Y K.The feasibility and importance of considering climate change impacts in building retrofit analysis[J].Applied energy,2019,233/234:254- 270.
Analysis of solutions for residential buildings in hot summer and cold winter zone based on energy quota
Cao Xinyun Yu Wei Xiong Jie Du Chenqiu Li Nan Yao Runming
(Chongqing University)
Abstract: Residents in the hot summer and cold winter zone have the unique energy usage pattern of partial-space and partial-time for heating and cooling of buildings. Based on this situation, this paper develops a multi-objective optimization and multi-criteria decision-making model by applying the optimization algorithm NSGA-Ⅱ-TOPSIS method. Energy consumption, comfort and economy are selected as three goals in this model. The recommended optimal technical solution can be obtained after the trade-off of the three goals. Compared with the current residential building standards, the recommended technical solution can reduce the annual heating and cooling load by 34.7% and extend the non-heating and cooling time by 12.5%. In addition, more feasible solutions are also compared and discussed in this paper, which can not only maintain the indoor thermal comfort condition during the occupied time in the occupied space, but also control the annual energy consumption of heating and cooling within the energy quota. The technical solutions proposed in this paper can provide a reference for the design of residential buildings in this area, and provide strong support for the revision of relevant standards.
Keywords: hot summer and cold winter zone; energy quota; residential building; multi-objective optimization; multi-criteria decision making;
736 0 0
文字:     A-     A+     默认 取消