无腹筋板柱节点抗冲切承载力计算研究
0 引言
鉴于冲切问题的重要性和复杂性, 国际上许多学者对影响板柱节点抗冲切承载力的因素进行了大量研究, 确定的主要影响因素有混凝土强度、抗弯纵筋配筋率、尺寸效应等。由于板柱节点在冲切破坏过程中的应力状态和各变量间的相互作用较为复杂, 尽管相关学者提出了不同的理论计算模型和分析方法, 如极限平衡法
1 各规范抗冲切承载力计算方法比较
1913年, Talbot
由表1各规范抗冲切承载力Vp计算公式对比可知, 美国规范ACI 318-11与加拿大规范CAN/CSA A23.3-04的表达式较为相似, 临界截面位置的取法也相同。进一步分析可知, 由于美国规范ACI 318-11、加拿大规范CAN/CSA A23.3-04与欧洲规范Eurocode 2-2003分别认为混凝土的轴心抗拉强度ft与混凝土轴心抗压强度fc的1/2或1/3次方成正比, 因此, 尽管各规范对抗冲切承载力的计算表达式不尽相同, 但美国规范ACI 318M-11、加拿大规范CAN/CSA A23.3-04、欧洲规范Eurocode 2-2003以及中国规范GB 50010—2010均认为钢筋混凝土板的抗冲切承载力与混凝土的轴心抗拉强度ft成正比
尽管对各影响因素的考虑有所不同, 但总的来说, 各规范计算板抗冲切承载力考虑的主要因素包括混凝土强度fc、纵筋配筋率ρ、临界截面周长um以及板的有效高度h0等。为考量这些因素对板受冲切承载力的影响, 本文收集国内外方形中柱节点以及作者的试验数据
由图2 (a) , (b) 可以看出, 当抗弯纵筋配筋率 ρ≤1%时, 美国规范ACI 318M-11和中国规范GB 50010—2010过高估计了板的抗冲切承载力, 偏不安全;而当抗弯纵筋配筋率ρ>1%时, 规范预测值较试验结果偏小, 规范公式偏于保守;由图2 (c) 可知, 欧洲规范Eurocode 2-2003虽然考虑了抗弯纵筋配筋率的有利影响, 但仍高估了部分配筋率ρ≤1%板的抗冲切承载力, 且试验值与规范预测值之比的平均值较前两者明显偏大, 离散性较大。
2 冲切承载力分析
综上所述, 本节选取主要影响因素fc, ρ, um等变量对未配置抗冲切钢筋的板的冲切承载力进行分析, 并假定抗冲切承载力可用以下方程式表达:
式中:k为待定系数;fc和fcu分别为混凝土轴心抗压强度和立方体抗压强度, 并按照中国规范GB 50010—2010中的公式 (即式 (1) 和 (2) ) 进行计算;为便于比较, fc均按照式 (2) 进行计算;αc2为混凝土脆性折减系数, 当混凝土强度等级不大于C40时, 混凝土脆性折减系数αc2=1, 当混凝土强度等级为C80时, 取0.87, 中间强度等级按线性插值;ρ为抗弯纵筋的配筋率, ρ= (ρxρy) 0.5;c1和c2分别为混凝土和抗弯纵筋的待定影响系数, 通过对试验数据的回归统计分析进行确定;对于临界截面位置, 参照作者的试验结果
2.1 分析过程
在检验单变量对抗冲切承载力的影响时, 为了消除其他因素的影响, 采用下列分析过程
(1) 在分析单一变量 (混凝土轴心抗压强度或抗弯钢筋配筋率) 对抗冲切承载力的影响时, 首先分别定义中间项
(2) 设定待定系数 (c1或c2) 的初始值, 并计算每个样本抗冲切承载力Vij与中间项Yij的比值, 其中, 下标i为各组编号 (i=1, 2, …, m) ;下标j则表示各组中的样本编号 (j=1, 2, …, n) 。首先, 可得到各组的平均值Xi:
(3) 其次, 得到各组单个样本的相对偏差eij:
(4) 再次, 得到整个样本的平均偏差:
(5) 最后, 调整待定系数 (c1或c2) 的取值, 并重复步骤 (2) ~ (4) , 当平均偏差达到最小值时, 分析中止。
2.2 分析结果
通过上述分析过程, 可以得到单一变量影响系数 (c1或c2) 变化过程中样本平均偏差
由表2和表3的分析结果可以看出, 当c2=0.5时, 平均偏差
值得注意的是, 式 (7) 是建立在既有独立板柱节点的试验研究基础之上, 而对于实际工程中的中柱节点, 其抗冲切承载力往往由于周边结构的约束作用而有所提高, Alexander等
分析结果 表2
变量 |
范围 | 组数m | c1或c2 | 平均偏差 |
fc |
11.9~80MPa | 50 |
1.00 |
0.086 8 |
0.66 |
0.078 1 | |||
0.50 |
0.075 6 | |||
0.33 |
0.073 6 | |||
0.25 |
0.073 0 | |||
0 |
0.072 6 | |||
ρ |
0.33%~3% | 40 |
1.00 |
0.079 3 |
0.66 |
0.070 7 | |||
0.50 |
0.070 0 | |||
0.33 |
0.071 0 | |||
0.25 |
0.072 1 | |||
0.00 |
0.076 2 |
c1, c2不同组合的变异系数 表3
c1 |
c2 |
||||
0 |
0.25 | 0.33 | 0.50 | 0.66 | |
0.25 |
0.244 7 | 0.187 5 | 0.175 6 | 0.168 2 | 0.185 9 |
0.33 |
0.242 7 | 0.184 5 | 0.172 1 | 0.163 7 | 0.180 8 |
0.50 |
0.248 2 | 0.190 4 | 0.177 7 | 0.167 9 | 0.182 5 |
0.66 |
0.266 7 | 0.212 4 | 0.200 5 | 0.190 3 | 0.201 4 |
3 结论
采用国内外既有方形中柱节点试验数据作为评估样本, 对国内外设计规范中无腹筋板柱节点抗冲切承载力计算公式进行了介绍和评述, 得到以下结论:
(1) 各规范中无腹筋板抗冲切承载力计算公式对不同影响因素的考虑方式不尽相同, 但各规范均认为无腹筋板柱节点的抗冲切承载力与混凝土的轴心抗拉强度成正比。此外, 与英国规范BS 8110-1∶1997和欧洲规范Eurocode 2-2003不同的是, 美国规范ACI 318M-11、加拿大规范CAN/CSA A23.3-04和中国规范GB 50010—2010公式均未考虑纵筋销栓作用的有利影响, 规范预测值相比试验值偏差较大。
(2) 当纵筋配筋率较低 (ρ≤1%) 时, 中国规范GB 50010—2010公式过高估计了无腹筋板的抗冲切承载力, 偏不安全;而当配筋率较高 (ρ>1%) 时, 规范公式又偏于保守。
(3) 尽管欧洲规范Eurocode 2-2003考虑了抗弯纵筋配筋率的有利影响, 但仍高估了部分配筋率ρ≤1%板柱节点的抗冲切承载力, 离散性较大;且试验实测值与规范预测值之比的平均值明显增大, 规范公式偏于保守。
(4) 基于对样本的回归分析, 本文提出了形式简单的无腹筋板抗冲切承载力建议计算公式。该公式的预测值与试验结果符合程度良好、离散性小, 并具有一定的安全储备, 可为进一步完善我国规范无腹筋板抗冲切承载力计算提供参考。
[2] MIKAEL W B, MOGENS P N, JENSEN B C.Axisymmetric punching of plain and reinforced concrete [R].Copenhagen:Technical University of Denmark, 1976:80-88.
[3] JIANG DAHUA, SHEN JINGHUA.Strength of concrete slabs in punching shear[J].Journal of Structural Engineering, 1986, 112 (12) :2578-2591.
[4] BORTOLOTTI L.Punching shear strength in concrete slabs[J].ACI Structural Journal, 1990, 87 (2) :208-219.
[5] SCOTT B A, SIDNEY H S.Ultimate strength of slab-column connections[J].ACI Structural Journal, 1987, 84 (3) :225-261.
[6] TALBOT A N.Reinforced concrete wall footings and column footings[D].Urbana-Champaign:University of Illinois, 1925:67.
[7] Building code requirements for structural concrete (ACI 318M-11) and commentary:ACI Committee 318[S].Farmington Hills:American Concrete Institute, 2011:503.
[8] Design of concrete structures:CAN/CSA A23.3-04[S].Mississauga:Canadian Standards Association, 2004:214.
[9] Structural use of concrete-part 1:code of practice of design and construction:BS 8110-1∶1997 [S].British:British Cement Association, 1997:55-58.
[10] Eurocode 2:Design of concrete structures-part 1-1:general rules and rules for buildings [S].Brussels:Standards Policy and Strategy Committee, 2003:225.
[11] 混凝土结构设计规范:GB 50010—2010 [S].北京:中国建筑工业出版社, 2011:201.
[12] 魏巍巍, 贡金鑫, 田磊.钢筋混凝土板受冲切承载力对比分析[J].建筑科学与工程学报, 2010, 27 (4) :44-56.
[13] 赵晋.钢筋混凝土板柱节点冲切破坏后性能研究[D].长沙:湖南大学.2016:144-149.
[14] 赵晋, 易伟建, 朱泽华.板柱节点冲切破坏后受力性能试验研究[J].建筑结构学报.2015, 36 (7) :35-42.
[15] 易伟建, 赵晋, 朱泽华.偏心荷载作用下中柱节点冲切破坏后受力性能试验研究[J].建筑结构, 2016, 46 (2) :1-7.
[16] TIAN YING, JAMES O J, OGUZHAN B.Strength evaluation of interior slab-column connections[J].ACI Structural Journal, 2008, 105 (6) :692-700.
[17] ALEXANDER S D B, SIMMONDS S H.Tests of column-flat plate connections[J].ACI Structural Journal, 1992, 89 (5) :495-502.