大空间下送风冬季全热B-G模型研究

作者:黄晨 范钱宏 李佳霖 悦靖 王非 邹志军 朱继阳 苗宇峰
单位:上海理工大学 江森自控中国)投资有限公司 上海融创房地产开发集团有限公司
摘要:基于温度型Block-Gebhart(B-G)模型,考虑渗透风、下送热风上浮和湿源散湿等因素,建立了冬季特征的全热B-G模型,以预测冬季大空间室内热环境和供热效果。基于某采用下送风分层空调的大空间建筑,建立了6个分区的冬季全热B-G模型,以6个工况的实验条件预测了对应的理论热环境与热负荷。实验验证表明:室内各区空气温度、壁面温度、空气比焓的平均绝对相对误差的均值分别为4.75%、4.33%、2.80%;各工况热负荷预测值与实验值相对误差为-14.78%~-0.22%。所建模型拓展了B-G模型在冬季和有湿源情况下的应用。
关键词:大空间建筑热环境全热B-G模型下送风渗透风湿源热负荷
作者简介:黄晨,女,1958年生,博士研究生,教授;*苗宇峰(通信作者)200093上海市杨浦区军工路516号上海理工大学E-mail:13262535267@163.com;
基金:国家自然科学基金资助项目(编号:51278302)
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] LIU X C,LIU X H,ZHANG T,et al.Comparison of winter air infiltration and its influences between large-space and normal-space buildings[J].Building and environment,2020,184:107183.

[2] HUANG C,ZOU Z J,LI M L,et al.Measurements of indoor thermal environment and energy analysis in a large space building in typical seasons[J].Building and environment,2007,42(5):1869- 1877.

[3] MA J Y,ZHANG X,LI A G,et al.Analyses of the improvement of subway station thermal environment in northern severe cold regions[J].Building and environment,2018,143:579- 590.

[4] LIU X C,ZHANG T,LIU X H,et al.Energy saving potential for space heating in Chinese airport terminals:the impact of air infiltration[J].Energy,2021,215:119175.

[5] 刘效辰,张涛,梁媚,等.高大空间建筑冬季渗透风研究现状与能耗影响[J].暖通空调,2019,49(8):92- 99.

[6] 王鑫磊,赵欣.北京首都机场T2航站楼冬季室内参数实测与分析[J].环境工程,2015,33(增刊1):834- 839.

[7] 翁建涛,赵康,章鸿.航站楼高大空间冬季室内热环境实测分析[J].暖通空调,2018,48(1):72- 77.

[8] BOUIA H,DALACIEUX P.Simplified modeling of air movements inside dwelling room[C]//Building Simulation'91,1991:106- 110.

[9] LI Y,SANDBERG M,FUCHS L.Vertical temperature profiles in rooms ventilated by displacement:full-scale measurement and nodal modelling[J].Indoor air,1992,2(4):225- 243.

[10] GAO J,ZHAO J N,GAO F S.Displacement of natural ventilation in an enclosure with a convective/radiative heat source and nonadiabatic envelopes[J].Journal of solar energy engineering,2006,128(1):83- 89.

[11] GAO J.Calculation of natural ventilation in large enclosures[J].Indoor and built environment,2007,16(4):292- 301.

[12] TOGARI S,ARAI Y,MIURA K.A simplified model for predicting vertical temperature distribution in a large space[G]//ASHRAE.ASHRAE Transactions 1993:part 1.Atlanta:ASHRAE Inc.,1993:84- 90.

[13] 蔡宁.基于同步求解模型的大空间分层空调垂直温度分布特性研究[D].上海:上海理工大学,2011:9- 32,54- 72.

[14] 刘洋.基于BG模型大空间下送风分层空调负荷研究[D].上海:上海理工大学,2018:9- 32,85- 103.

[15] 朱卓.实际大空间建筑喷口送风分层空调对流热转移负荷研究[D].上海:上海理工大学,2019:10- 29,40- 47.

[16] 李佳霖.大空间下送风全热B-G冬季修正模型研究[D].上海:上海理工大学,2020:14- 17,33- 61.

[17] 杨通.大空间下送风夏季非稳态全热B-G修正模型研究[D].上海:上海理工大学,2020:30- 33,54- 67.

[18] WANG X,ZHOU Y J,SHI C L,et al.Vertical temperature distribution in large space buildings in the heating season:on-site measurement and Block-Gebhart model prediction considering air infiltration[J].Building and environment,2021,191:107579.

[19] 路凯文,黄晨,李瑞彬,等.Block-Gebhart模型分区数对预测大空间热环境参数及负荷的影响[J].暖通空调,2021,51(3):101- 107.

[20] 姜昕,王昕,马静思,等.基于Block-Gebhart模型的大空间喷口送风对流热转移负荷研究[J].暖通空调,2021,51(4):130- 135,111.

[21] GEBHART B.A new method for calculating radiant exchanges[G]//ASHRAE.ASHRAE Transactions 1959.Atlanta:ASHRAE Inc.,1959:321- 332.

[22] LV L G,LUO Y Y,HUANG C.A synchronizing thermal model based on three kinds of radiant models to compute interior air temperature and interior wall temperature[J].Journal of building engineering,2018,18:343- 351.

[23] IAN B M.An algorithm for calculating convection coefficients for internal building surfaces for the case of mixed flow in rooms[J].Energy and buildings,2001,33(4):351- 361.

[24] 陆耀庆.实用供热空调设计手册[M].2版.北京:中国建筑工业出版社,2008:1716- 1733.
B-G model of total heat in winter for large space buildings with low-side wall air supply systems
Huang Chen Fan Qianhong Li Jialin Yue Jing Wang Fei Zou Zhijun Zhu Jiyang Miao Yufeng
(University of Shanghai for Science and Technology Johnson Controls (China) Investment Co., Ltd. Shanghai Rongchuang Real Estate Development Group Co., Ltd.)
Abstract: Based on the temperature-type Block-Gebhart(B-G) model, considering the air infiltration, air floating of low-side wall air supply and moisture source dissipation, this paper establishes a B-G model of total heat to predict the indoor thermal environment and heating effect of large space buildings in winter. The B-G model of total heat in winter is built and divided into six zones for a large space building with low-side wall air supply system. The corresponding theoretical thermal environment and heating load are predicted according to the six experimental conditions. The experimental results show that the average value of the mean absolute relative error of air temperature, wall temperature and air enthalpy is 4.75%, 4.33% and 2.80%, respectively, and the relative errors of predicted and experimental heating load are-14.78% to-0.22%. This model extends the application of B-G model with moisture sources in winter.
Keywords: large space building; thermal environment; B-G model of total heat; low-side wall air supply; air infiltration; moisture source; heating load;
748 0 0
文字:     A-     A+     默认 取消