冀东地区既有农居节能改造的全寿命周期碳排放分析

作者:谢慧 宋园园 张振迎
单位:北京科技大学 华北理工大学
摘要:建立了碳排放减排率模型,并对所提出的节能改造方案进行了计算与验证。结果表明:农居围护结构改造后的碳排放较改造前可降低52.85%~86.72%;外墙、屋顶的材料生产碳排放量比门窗的材料生产碳排放量大。在农居围护结构改造的基础上分析了3种热源改造方案的投资回收期,其结果为节能型燃煤炉的投资回收期最短,其次分别为空气源热泵和燃气壁挂炉。
关键词:全寿命周期农居围护结构节能改造碳排放投资回收期
作者简介:谢慧,女,1977年生,博士研究生,副教授,100083北京市海淀区学院路30号北京科技大学,E-mail:xiehui20000@ustb.edu.cn;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2020[M].北京:中国建筑工业出版社,2020:14.

[2] LONG E S.Influence of inner heat sources on annual heating and cooling energy consumption and its relative variation rates (RVRs)[J].Building and environment,2005,40(4):579- 586.

[3] VERBEECK G,HENS H.Life cycle inventory of buildings:a calculation method[J].Building and environment,2010,45(4):1037- 1041.

[4] 张振兴,王崇杰,薛一冰.外窗对寒冷地区采暖居住建筑节能影响的模拟分析[J].山东建筑大学学报,2007,22(1):28- 34.

[5] 马坤茹,于瑞佼,李雅欣.河北保定某县农村典型既有住宅节能改造方案设计[J].供热制冷,2018(8):29- 31.

[6] 朱方伟,张春枝,陈焰华,等.武汉市公共建筑运营阶段碳排放研究[J].暖通空调,2018,48(12):71- 76.

[7] 潘毅群,梁育民,朱明亚.碳中和目标背景下的建筑碳排放计算模型研究综述[J].暖通空调,2021,51(7):37- 48.

[8] XIAO B,HUANG T Y,HE L,et al.Experimental study of an improved air-source heat pump system with a novel three-cylinder two-stage variable volume ratio rotary compressor[J].International journal of refrigeration,2019,100:343- 353.

[9] 郑秀君,胡彬.我国生命周期评价(LCA)文献综述及国外最新研究进展[J].科技进步与对策,2013,30(6):155- 160.

[10] 肖汉雄,杨丹辉.基于产品生命周期的环境影响评价方法及应用[J].城市与环境研究,2018(1):88- 105.

[11] 王志慧,叶晓青,周强.建筑外墙不同选材方案的碳排放量对比分析[J].重庆建筑,2015,14(9):53- 56.

[12] 刘娜.建筑全生命周期碳排放计算与减排策略研究[D].石家庄:石家庄铁道大学,2014:30- 32.

[13] 陈启超.寒冷地区既有居住建筑节能改造适应性评价研究[D].北京:北京建筑大学,2017:15- 16.

[14] 中国电力年鉴编辑委员会.中国电力年鉴2008[M].北京:中国电力出版社,2008:4.

[15] 中国建筑科学研究院,中国建筑设计研究院.农村居住建筑节能设计标准:GB/T 50824—2013[S].北京:中国建筑工业出版社,2013:13- 15.

[16] 孙成雷.北京地区新农村规划中的建筑节能关键技术研究[D].北京:北京工业大学,2008:52- 53.
Life cycle carbon emission analysis of existing rural residential energy-saving transformation in eastern Hebei
Xie Hui Song Yuanyuan Zhang Zhenying
(University of Science and Technology Beijing North China University of Science and Technology)
Abstract: In this paper, the carbon emission reduction rate model is established, and the proposed energy-saving transformation scheme is calculated and verified. The results show that the carbon emission of the rural residential building envelope after reconstruction can be reduced by 52.85% to 86.72% compared with that before reconstruction, and the carbon emission of material production of exterior wall and roof is greater than that of door and window. On the basis of the reconstruction of the building envelope of the rural residence, the payback periods of three heat source reconstruction schemes are analysed. The result is that the payback period of the energy-saving coal fired furnace is the shortest, followed by the air-source heat pump and the gas wall mounted furnace.
Keywords: full life cycle; rural residence; building envelope; energy-saving transformation; carbon emission; payback period;
713 0 0
文字:     A-     A+     默认 取消