北京2022年冬奥会和冬残奥会场内主火炬结构多工况有限元分析

引用文献:

胡涛 汪瑞方 刘悦 宋晓峰 李波. 北京2022年冬奥会和冬残奥会场内主火炬结构多工况有限元分析[J]. 建筑结构,2023,48(09):85-90,6.

HU Tao WANG Ruifang LIU Yue SONG Xiaofeng LI Bo. Finite element analysis of Beijing 2022 Olympic Winter Games and Winter Paralympic Games cauldron in National Stadium under multi-load cases[J]. Building Structure,2023,48(09):85-90,6.

作者:胡涛 汪瑞方 刘悦 宋晓峰 李波
单位:北京航化节能环保技术有限公司 北京交通大学土木建筑工程学院
摘要:北京2022年冬奥会和冬残奥会场内主火炬是典型的舞美造型结构体,区别于传统火炬,此次主火炬需要实现部分表演功能,而且在表演过程中要完成提升、翻转和旋转等动作。主火炬结构区别于传统结构,有限元分析包括多种设计工况,设计工况根据实际工作状态确定。同时,整体结构造型特殊,呈大面积薄壁状,为典型的风敏感结构,结构设计规范中并没有给出明确的风荷载数值供参考,采用了风洞试验方法获取了不同工作状态下0°~360°各个风向角的风荷载,确立了真实的设计工况。然后通过ANSYS有限元软件建立主火炬结构的有限元模型,计算了结构在各种不同设计工况下的应力与位移,结果显示:各个工况下主火炬应力满足强度要求,位移满足刚度要求。在四场仪式上,主火炬结构完美地完成了表演任务。
关键词:冬奥会;冬残奥会;主火炬;有限元分析;薄壁结构;风洞试验;
作者简介:胡涛,硕士,高级工程师,主要从事节能环保装置和非标结构设计与研发,Email:hut@calt11.cn。
基金:国家重点研发计划项目(2021YFF0308000)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 黄伟,尹华钢,刘晓华,等.北京2008奥运会主火炬抗风研究[C]//第二届全国建筑结构技术交流会论文集.上海,2009:863-866.
[2] 庞宗占,汪瑞方,张赞,等.北京2022年冬奥会和冬残奥会场内主火炬项目概述[J].中国航天,2022(3):71-77.
[3] 建筑结构荷载规范:GB 50009—2012[S].北京:中国建筑工业出版社,2012.
[4] 钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社,2018.
[5] 钱小辉,冯益,陈海霞,等.大型有机玻璃碗结构多工况有限元分析[J].建筑结构,2022,52(8):42-47.
[6] 郑慧明.奥运会主火炬塔表面风压分布影响因素数值模拟研究[D].绵阳:西南科技大学,2017.
[7] 武岳,孙瑛,郑朝荣.风工程与结构抗风设计[M].2版.哈尔滨:哈尔滨工业大学出版社,2019.
[8] 张鑫鑫,李波,张石,等.基于北京中心城区实测的城市边界层风场特性[J].建筑结构学报,2022,43(3):109-117.
[9] 建筑工程风洞试验方法标:JGJ/T 338—2014[S].北京:中国建筑工业出版社,2015.
[10] 杨春晖,梁峰,张叙.沈阳国际金融中心1A楼复杂高层结构分析[J].建筑结构,2017,47(1):45-49,59.
Finite element analysis of Beijing 2022 Olympic Winter Games and Winter Paralympic Games cauldron in National Stadium under multi-load cases
HU Tao WANG Ruifang LIU Yue SONG Xiaofeng LI Bo
(Beijing Aerospace-Petrochemical Energy Conservation & Enviroment Protection Technology Co., Ltd. School of Civil Engineering, Beijing Jiaotong University)
Abstract: Beijing 2022 Olympic Winter Games and Winter Paralympic Games cauldron in National Stadium is a typical dance beauty modeling structure, which takes on part of the performance function different from traditional cauldron. The performance process must complete the lifting, the turning and the rotation and so on. The cauldron structure is different from the traditional structure. The finite element analysis includes a variety of design cases which is determined according to the actual working condition. At the same time, the structure is a special shape and a large area thin-walled structure, which is a typical wind-sensitive structure. There is no explicit wind load in the structural design code for reference, so the wind tunnel test was used to obtain the loads of 0 ° ~ 360 ° wind direction angles under different working cases, then the real design cases were established. The finite element model of the cauldron structure was established by software ANSYS, and the stress and displacement of the structure were calculated. The results show that the stress meets the requirement of strength and the displacement meets the requirement of stiffness. The whole structure completed the performance task perfectly in the four ceremonies.
Keywords: Olympic Winter Games; Winter Paralympic Games; cauldron; finite element analysis; thin-walled structure; wind tunnel test
499 0 0
文字:     A-     A+     默认 取消