超高性能混凝土工作及力学性能分析

引用文献:

姚山 杨忠平 葛文杰 胡跃祥 李炜 孙传智 严卫华 曹大富. 超高性能混凝土工作及力学性能分析[J]. 建筑结构,2023,48(02):142-147.

YAO Shan YANG Zhongping GE Wenjie HU Yuexiang LI Wei SUN Chuanzhi YAN Weihua CAO Dafu. Analysis on working and mechanical properties of ultra-high performance concrete[J]. Building Structure,2023,48(02):142-147.

作者:姚山 杨忠平 葛文杰 胡跃祥 李炜 孙传智 严卫华 曹大富
单位:甘肃省工程设计研究院有限责任公司 扬州大学建筑科学与工程学院 江苏省装配式建筑与智能建造工程研究中心 扬州市房屋安全鉴定中心
摘要:为研究水胶比、减水剂和矿物掺合料掺量对超高性能混凝土(UHPC)工作性能的影响以及水胶比、矿物掺合料和钢纤维掺量对UHPC力学性能的影响,分别进行净浆流动度试验和UHPC抗折、抗压强度试验。结果表明:提高水胶比和增加粉煤灰掺量可以改善浆体的流动性,但会降低UHPC的抗折强度和抗压强度;增加矿渣粉掺量可以在改善浆体流动性的同时,提高UHPC后期的抗折强度和抗压强度;随着硅灰掺量的增加,浆体的流动性不断降低,而UHPC的抗折强度和抗压强度呈现先上升后下降的趋势,当硅灰掺量为25%时,UHPC的强度达到峰值,抗折强度和抗压强度分别提高23.7%和32.0%;钢纤维掺量的增加会提高UHPC强度,当掺入2%的钢纤维时,UHPC的抗折强度与抗压强度分别提高39.7%和59.1%。综合考虑,建议硅灰掺量在20%~30%之内为宜,矿渣粉掺量不超过30%,粉煤灰掺量不超过20%,钢纤维掺量宜取2%。
关键词:超高性能混凝土;流动性;力学性能;抗压强度;抗折强度;矿物掺合料;钢纤维;
作者简介:姚山,博士,高级工程师,主要从纤维混凝土结构方向的研究,Email:yaoshan8@126.com。葛文杰,博士,副教授,主要从事新型结构与新材料结构的研究,Email:gewj@yzu.edu.cn。
基金:甘肃省建设科技计划项目(JK2021-19);江苏省自然科学基金面上项目(BK20201436);江苏省装配式建筑与智能建造工程研究中心开放基金(2021);江苏省建设系统科技项目(2018ZD047、2021ZD06);扬州市市校合作资金项目(YZ2022194、YZU212105);扬州市建设科技项目(2022ZD03、202204)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] LARRARD F D,SEDRAN T.Optimization of ultra-high-performance concrete by the use of a packing model [J].Cement and Concrete Research,1994,24(6):997-1009.
[2] 李莉.活性粉末混凝土梁受力性能及设计方法研究[D].哈尔滨:哈尔滨工业大学,2010.
[3] RICHARD P,CHEYREZY M.Reactive powder concrete with high ductility and 200~800MPa compressive strength [J].ACI Spring Conversion,1994,144(3):507-518.
[4] RICHARD P,CHEYREZY M.Composition of reactive powder concretes [J].Cement and Concrete Research,1995,25(7):1501-1511.
[5] 李云峰,孔令鹏,李强龙.多种矿物掺合料对超高强混凝土力学性能影响的试验研究[J].中国科技论文,2017,12(10):1141-1144.
[6] 黄伟.矿物掺合料对超高性能混凝土的水化及微结构形成的影响[D].南京:东南大学,2017.
[7] HUANG H H,GAO X J,WANG H,et al.Influence of rice husk ash on strength and permeability of ultra-high performance concrete [J].Construction and Building Materials,2017,149:621-628.
[8] KANG S T,LEE Y,PARK Y D,et al.Tensile fracture properties of an ultra high performance fiber reinforced concrete (UHPFRC)with steel fiber [J].Composite Structures,2010,92(1):61-71.
[9] 郭永伟.超高韧性混凝土特性与应用研究[J].施工技术,2021,50(9):20-22.
[10] 邵旭东,樊伟,黄政宇.超高性能混凝土在结构中的应用[J].土木工程学报,2021,54(1):1-13.
[11] 饶欣频,霍文斌,胡智敏,等.超高性能混凝土与普通混凝土的界面抗剪性能试验研究[J].建筑结构,2021,51(14):101-106.
[12] 郑七振,农德才,龙莉波,等.基于超高性能水泥基复合材料连接的预制装配式混凝土剪力墙抗震性能试验研究[J].建筑结构,2022,52(6):1-9,60.
[13] 杨汉杰,莫时旭,郑艳.超高性能混凝土翼板-窄幅钢箱组合梁双重组合作用试验与有限元分析[J].建筑结构,2022,52(13):69-76.
[14] 徐海宾,邓宗才.新型超高性能混凝土力学性能试验研究[J].混凝土,2014(4):20-23.
[15] 张吉松,赵颖华,蒋治鑫.低水泥用量超高性能混凝土力学性能及微结构试验[J].大连海事大学学报,2017,43(2):123-128.
[16] 混凝土外加剂匀质性试验方法:GB/T 8077—2012[S].北京:中国标准出版社,2012.
[17] 水泥胶砂强度检验方法(ISO法):GB/T 17671—1999 [S].北京:中国标准出版社,1999.
[18] 李洋.免蒸养超高性能混凝土的性能研究[D].哈尔滨:哈尔滨工业大学,2019.
[19] 郝先慧,李海艳,李华,等.活性粉末混凝土(RPC)配合比优化试验及计算[J].混凝土,2018(3):156-160.
[20] 李建永.RPC130活性粉末混凝土配合比设计与应用研究[D].石家庄:石家庄铁道大学,2013.
[21] 王倩楠,顾春平,孙伟.水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律[J].材料导报,2017,31(23):85-89.
Analysis on working and mechanical properties of ultra-high performance concrete
YAO Shan YANG Zhongping GE Wenjie HU Yuexiang LI Wei SUN Chuanzhi YAN Weihua CAO Dafu
(Gansu Engineering Design Research Institute Co., Ltd. College of Civil Science and Engineering, Yangzhou University Jiangsu Province Engineering Research Center of Prefabricated Building and Intelligent Construction Yangzhou Housing Safety Appraisal Center)
Abstract: In order to study the effects of water-binder ratio, water reducing agent content and mineral admixture content on the working performance of ultra-high performance concrete(UHPC) and the influence of water-binder ratio, mineral admixture content and steel fiber content on mechanical properties of UHPC, the fluidity test of slurry and the flexural and compressive strength test of UHPC were carried out respectively. The results show that increasing the water-binder ratio and fly ash content can improve slurry fluidity, but reduce the flexural strength and compressive strength of UHPC. The flexural strength and compressive strength of UHPC in later period can be improved by increasing the content of slag powder while improving slurry fluidity. With the increase of silica fume content, the slurry fluidity decreases continuously, while the flexural strength and compressive strength of UHPC increase first and then decrease. When the silica fume content is 25%, the strength of UHPC reaches the peak, and the flexural strength and compressive strength are improved by 23.7% and 32.0% respectively. The increase of steel fiber content can improve the strength of UHPC, when 2% steel fiber is added, the flexural strength and compressive strength of UHPC are improved by 39.7% and 59.1% respectively. Considering comprehensively, it is recommended that the silica fume content should be within 20%~30%, the slag powder content should not exceed 30%, the fly ash content should not exceed 20%, and the steel fiber content should be 2%.
Keywords: ultra-high performance concrete; fluidity; mechanical property; compressive strength; flexural strength; mineral admixture; steel fiber
364 0 0
文字:     A-     A+     默认 取消