中深层套管式地埋管地源热泵系统能效分析

作者:曹雨晨 孔维政 陈睿 林朵童 黄帅 董建锴
单位:国网能源研究院有限公司 哈尔滨工业大学
摘要:中深层套管式地埋管地源热泵系统的能效受多种因素影响,为保证其高效运行,对其影响因素进行研究尤为重要。本文建立了中深层套管式地埋管地源热泵系统换热器传热模型,采用工程实测数据验证该模型的准确性。基于该模型,量化了一个供暖期内多种因素对系统能效的影响。结果表明:进口水温和岩土导热系数对系统能效具有重要影响,回填材料导热系数对其影响较小;增大循环流量会提高取热功率,但系统能效也随之降低,当循环流量由8.33 kg/s增大至10.56 kg/s时,取热功率提升4.95%,能效下降1.23%;增大外管管径、岩土和回填材料的导热系数能够提升系统能效,但达到一定数值后,对能效提升效果不显著。本研究对中深层套管式地埋管地源热泵系统长期稳定运行及能效提升具有参考意义。
关键词:中深层地热能地源热泵套管式地埋管换热器运行性能能效分析
作者简介:曹雨晨,男,1992年生,工学博士,工程师,102209北京市昌平区北七家未来科学城国家电网公司园区,E-mail:584612802@qq.com:;
基金:国网能源研究院有限公司科学技术项目“面向中深层地热的热泵清洁供能能效提升技术研究及应用”(编号:SGSNKY00DYJS2100029);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 黄帅,董建锴,李骥,等.中深层地埋管换热器运行模式对岩土热恢复特性的影响[J].可再生能源,2022,40(7):899- 906.

  [2] 黄帅,孙苏雨婷,董建锴,等.中深层地埋管换热器周围岩土热恢复特性[J].西安建筑科技大学学报(自然科学版),2021,53(6):842- 850.

  [3] 王沣浩,蔡皖龙,王铭,等.地热能供热技术研究现状及展望[J].制冷学报,2021,42(1):14- 22.

  [4] 杜甜甜,满意,姜国心,等.套管式中深层地埋管换热器传热建模及取热分析[J].可再生能源,2020,38(7):887- 892.

  [5] 姜国心.被弃油井注采中深层地热能的改造及取热研究[D].济南:山东建筑大学,2020:39- 50.

  [6] LI C,GUAN Y L,JIANG C,et al.Numerical study on the heat transfer,extraction,and storage in a deep-buried pipe[J].Renewable energy,2020,152:1055- 1066.

  [7] LIU J,WANG F H,GAO Y,et al.Influencing factors analysis and operation optimization for the long-term performance of medium-deep borehole heat exchanger coupled ground source heat pump system[J].Energy and buildings,2020,226:110385.

  [8] 徐豹.中深层同轴套管式地埋管换热器传热特性研究[D].邯郸:河北工程大学,2020:23- 40.

  [9] 高洁,崔萍,贾林瑞.中深层套管式埋管换热性能的研究[J].区域供热,2021(4):124- 132.

  [10] 韩二帅,李奉翠,梁磊,等.地质参数对中深层地热井长期取热特性影响分析[J].太阳能学报,2022,43(2):62- 68.

  [11] 黄帅,朱科,董建锴,等.中深层地埋管换热器取热稳定性及热影响半径[J].哈尔滨工业大学学报,2022,54(6):119- 127.

  [12] HUANG S,ZHU K,DONG J K,et al.Heat transfer performance of deep borehole heat exchanger with different operation modes[J].Renewable energy,2022,193:645- 656.

  [13] LI J,XU W,LI J F,et al.Heat extraction model and characteristics of coaxial deep borehole heat exchanger[J].Renewable energy,2021,169:738- 751.

  [14] 黄帅,董建锴,姜建中,等.中深层同轴套管式地埋管换热器取热特性[J].东北电力大学学报,2021,41(4):16- 23.

  [15] CASASSO A,SETHI R.Efficiency of closed loop geothermal heat pumps:a sensitivity analysis[J].Renewable energy,2014,62:737- 746.

  [16] KAHRAMAN A,ÇELEBI A.Investigation of the performance of a heat pump using waste water as a heat source[J].Energies,2009,2(3):697- 713.

  [17] HEIN P,KOLDITZ O,GÖRKE U,et al.A numerical study on the sustainability and efficiency of borehole heat exchanger coupled ground source heat pump systems[J].Applied thermal engineering,2016,100:421- 433.

  [18] ZHENG T Y,SHAO H B,SCHELENZ S,et al.Efficiency and economic analysis of utilizing latent heat from groundwater freezing in the context of borehole heat exchanger coupled ground source heat pump systems[J].Applied thermal engineering,2016,105:314- 326.

  [19] 鲍玲玲,徐豹,王子勇,等.中深层同轴套管式地埋管换热器传热性能分析[J].地球物理学进展,2020,35(4):1217- 1222.

  [20] LI C,GUAN Y L,JIANG C,et al.Study on heat transfer characteristics of the deep-buried ground heat exchanger under different multi-pipe layouts[J].Geothermics,2022,100:102343.

  [21] CHEN C F,CAI W L,NAUMOV D,et al.Numerical investigation on the capacity and efficiency of a deep enhanced U-tube borehole heat exchanger system for building heating[J].Renewable energy,2021,169:557- 572.

  [22] 孔彦龙,陈超凡,邵亥冰,等.深井换热技术原理及其换热量评估[J].地球物理学报,2017,60(12):4741- 4752.

  [23] 李骥,徐伟,李建峰,等.中深层地埋管供热技术综述及工程实测分析[J].暖通空调,2020,50(8):35- 39.

  [24] LIU J,WANG F H,CAI W L,et al.Numerical study on the effects of design parameters on the heat transfer performance of coaxial deep borehole heat exchanger[J].International journal of energy research,2018,43(12):6337- 6352.

  [25] CHEN H F,LIU H T,YANG F X,et al.Field measurements and numerical investigation on heat transfer characteristics and long-term performance of deep borehole heat exchangers[J].Renewable energy,2023,205:1125- 1136.

  [26] FU H Y,FANG L,YU M Z,et al.Influence and economic analysis of heat storage in the non-heating season on the heat extraction capacity of mid-deep borehole heat exchangers[J].Energy and buildings,2023,278:112619.
Energy efficiency analysis for medium-deep coaxial borehole ground-source heat pump systems
Cao Yuchen Kong Weizheng Chen Rui Lin Duotong Huang Shuai Dong Jiankai
(State Grid Energy Research Institute Harbin Institute of Technology)
Abstract: The energy efficiency of the medium-deep coaxial borehole ground-source heat pump systems(MDGSHPs) is affected by multiple factors, and to ensure their efficient operation, it is particularly important to study their influencing factors. In this paper, a heat transfer model of MDGSHPs' heat exchanger is established, and the accuracy of the model is verified by engineering-measured data. The influence of multiple factors on the energy efficiency of the system is quantified based on this model during one heating period. The results show that the inlet water temperature and the thermal conductivity of rock soil have an important impact on the energy efficiency of the system, while the thermal conductivity of the backfill material has little influence on it. Increasing the circulation flow rate will improve the heat extraction rate, but the energy efficiency of the system will decrease. When the circulation flow rate increases from 8.33 kg/s to 10.56 kg/s, the heat extraction rate increases by 4.95%, and the energy efficiency decreases by 1.23%. Increasing the outer pipe diameter and the thermal conductivity of rock soil and backfill material can improve the energy efficiency of the system, while it is not obvious to improve the energy efficiency after reaching a certain value. This study has reference significance for the long-term stable operation and energy efficiency improvement of MDGSHPs.
Keywords: medium-deep geothermal energy; ground-source heat pump; coaxial borehole heat exchanger; operation performance; energy efficiency analysis;
99 0 0
文字:     A-     A+     默认 取消