湿热地区充气薄膜屋面喷雾降温实验——以ETFE气枕屋面为例

作者:毛会军 孟庆林 黎珊 汪俊松 王世晓
单位:华南理工大学 亚热带建筑与城市科学全国重点实验室 广东省建筑设计研究院有限公司
摘要:为明确湿热地区屋面喷雾技术对充气薄膜屋面的降温效果,以广州无限极广场的乙烯-四氟乙烯共聚物(ETFE)气枕屋面为研究对象,通过在夏季典型气候条件下开展实验测试,量化了该技术对屋面表面与下方室内产生的降温效果,分析了屋面内外表面的热流量变化,并建立了以气象参数为自变量的屋面外表面降温效果预测模型。结果表明:喷雾系统在全天产生的外表面与内表面降温范围分别为3.8~12.3℃与1.5~2.9℃;屋面喷雾可提高室内人员的热舒适水平,室内空气温度与平均辐射温度降温范围分别为0.2~0.3℃与0.2~1.0℃;在上午与下午时段可使进入室内的传热热流量分别减少21.3%与33.9%,对降低建筑负荷具有积极作用;太阳辐射对屋面外表面降温效果影响最大,其次是风速,而湿球温度的影响最小。该技术不仅可在湿热地区应用,在其他高辐射地区应用仍可实现良好的降温效果。
关键词:湿热地区充气薄膜屋面喷雾降温效果室内热环境热流量
作者简介:毛会军,男,1996年生,在读博士研究生;*汪俊松,510641广东省广州市天河区五山路381号华南理工大学亚热带建筑科学国家重点实验室a栋,E-mail:arwjs@mail.scut.edu.cn;
基金:国家自然科学基金资助项目“含盐热湿气候条件下建筑热质耦合传递及节能研究”(编号:51938006);国家重点研发计划课题项目“‘一带一路’共建国家绿色建筑技术和标准研发与应用”课题“绿色建筑健康舒适关键技术研发与应用”(编号:2020YFE0200300);国家重点研发计划课题项目“南方地区大型综合体建筑绿色设计新方法与新技术协同优化”(编号:2016YFC0700205);华南理工大学“百步梯攀登计划”研究项目“厚大空腔透明膜采光屋面喷淋降温方法及控制系统”(编号:j2tw2021020049);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 孟庆林,陈卓伦,赵立华.西湖苑玻璃采光顶的实测与分析[J].建筑学报,2006(11):32- 34.

[2] HU J,CHEN W,ZHAO B.et al.Buildings with ETFE foils:a review on material properties,architectural performance and structural behavior[J].Construction and building materials,2017,131:411- 422.

[3] 张其林.膜结构在我国的应用回顾和未来发展[J].建筑结构,2019,49(19):55- 64.

[4] CHILTON J.Lightweight envelopes:ethylene tetra-fluoro-ethylene foil in architecture[J].Proceedings of the institution of civil engineers—construction materials,2013,166(6):343- 357.

[5] HU J,CHEN W,QU Y,et al.Safety and serviceability of membrane buildings:a critical review on architectural,material and structural performance[J].Engineering structures,2020,210:110292.

[6] MAININI A G,POLI T,PAOLINI R,et al.Transparent multilayer ETFE panels for building envelope:thermal transmittance evaluation and assessment of optical and solar performance decay due to soiling[J].Energy procedia,2014,48:1302- 1310.

[7] TIAN G,FAN Y,GAO M,et al.Indoor thermal environment of thin membrane structure buildings:a review[J].Energy and buildings,2021,234:110704.

[8] 黄晨,李美玲,邹志军.大空间建筑内热环境现场实测及能耗分析[J].暖通空调,2000,30(6):52- 55.

[9] CREMERS J,MARX H.Comparative study of a new ir-absorbing film to improve solar shading and thermal comfort for ETFE Structures[J].Procedia engineering,2016,155:113- 120.

[10] CREMERS J,MARX H.3D-ETFE:development and evaluation of a new printed and spatially transformed foil improving shading,light quality,thermal comfort and energy demand for membrane cushion structures[J].Energy procedia,2017,122:115- 120.

[11] OTANICAR T P,PHELAN P E,GOLDEN J S.Optical properties of liquids for direct absorption solar thermal energy systems[J].Solar energy,2009,83(7):969- 977.

[12] NAYAK A K,HAGISHIMA A,TANIMOTO J.A simplified numerical model for evaporative cooling by water spray over roof surfaces[J].Applied thermal engineering,2020,165:114514.

[13] 席仁静,狄育慧,郑松.西安市某大型商场喷淋屋顶天窗的降温效果分析[J].制冷与空调(四川),2018,32(4):435- 439.

[14] 黎敏婷,丁云飞.建筑玻璃屋面喷雾遮阳及降温效果[J].暖通空调,2014,44(12):99- 102.

[15] 杨昶,穆绩文,孟庆林.建筑采光中庭喷雾降温热环境测试与分析[J].建筑节能,2019,47(10):50- 55.

[16] MAININI A G,SPERONI A,ZANI A,et al.The effect of water spray systems on thermal and solar performance of an ETFE panel for building envelope[J].Procedia engineering,2016,155:352- 360.

[17] 张川燕,王子介.辐射供冷地面对围护结构内表面温度及室内热舒适的影响[J].建筑科学,2008,135(10):79- 84.

[18] 重庆大学,中国建筑科学研究院.民用建筑室内热湿环境评价标准:GB/T 50785—2012[S].北京:中国建筑工业出版社,2012:46- 47.

[19] ULPIANI G,DI PERNA C,ZINZI M.Mist cooling in urban spaces:understanding the key factors behind the mitigation potential[J].Applied thermal engineering,2020,178:115644.

[20] 卢素梅,孟庆林.围护结构内表面发射率对人体热舒适的影响[J].暖通空调,2019,49(5):112- 118.

[21] NICOL K.The energy balance of an exterior window surface[J].Building and environment,1977(12):215- 219.

[22] 中国建筑科学研究院.民用建筑热工设计规范:GB 50176—2016[S].北京:中国建筑工业出版社,2016:89- 90.

[23] STULL R.Wet-bulb temperature from relative humidity and air temperature[J].Journal of applied meteorology and climatology,2011,50(11):2267-2269.

[24] 王海燕,杨方廷,刘鲁.标准化系数与偏相关系数的比较与应用[J].数量经济技术经济研究,2006(9):150- 155.

[25] ULPIANI G.Water mist spray for outdoor cooling:a systematic review of technologies,methods and impacts[J].Applied energy,2019,254:113647.

[26] GONOME H,WAKABAYASHI K.Solar barrier performance of water mist cooling:applications using nano-and microsized droplets and bubbles[J].Applied thermal engineering,2020,171:115083.
Experiment on cooling effect of inflatable membrane roof mist spray in hot-humid areas——A case study of ETFE cushion roof
Mao Huijun Meng Qinglin Li Shan Wang Junsong Wang Shixiao
(South China University of Technology State Key Laboratory of Subtropical Building and Urban Science Guangdong Architectural Design & Research Institute Co., Ltd.)
Abstract: In order to explicit the cooling effect of mist spray on the inflatable membrane roof in hot-humid areas adequately, an ethylene tetra-fluoro-ethylene(ETFE) cushion roof in Guangzhou Infinity Plaza is selected as the research object. The cooling effects of this technology on the roof surface and the indoor air are quantified by a field experiment under typical climate conditions in summer, the heat flux variations through the interior and exterior roof surfaces are analysed, and a prediction model for assessing the cooling effect of roof exterior surface is established with meteorological parameters as independent variables. The results indicate that the temperature drops of the exterior and interior surfaces generated by spray system are 3.8-12.3 ℃ and 1.5-2.9 ℃, respectively. The roof mist spray can significantly improve indoor thermal comfort, the average drops of the indoor air temperature and mean radiant temperature are 0.2-0.3 ℃ and 0.2-1.0 ℃, respectively. This technique can also reduce the heat flux entering the room by 21.3% and 33.9% in the morning and afternoon, respectively, which has a positive effect on reducing the building cooling load. Besides, the roof cooling effect is most affected by solar radiation, followed by wind speed, and lastly the wet-bulb temperature. This technique can not only be applied to hot-humid areas, but also can generate good cooling effect in other areas with strong radiation.
Keywords: hot-humid area; inflatable membrane roof; mist spray; cooling effect; indoor thermal environment; heat flux;
550 0 0
文字:     A-     A+     默认 取消