机械加工车间油雾颗粒浓度分布 实测研究

作者:王非 吴照 姜昕 周玉璟 王昕 宋冰岩 邵明磊
单位:上海理工大学 上汽安悦节能技术有限公司
摘要:为评估机械加工车间油雾颗粒浓度的暴露水平,选取了3种不同工艺(干加工、湿加工、湿加工伴随热处理)的汽车组件厂房进行现场实测,研究生产工艺产生的油雾颗粒的浓度分布特性。结果表明:3个车间作业区域总悬浮颗粒物质量浓度分别为0.558、0.799、0.739 mg/m3;3个车间颗粒物平均粒径分别为6.4、5.9、5.8μm;机床单轴油雾质量散发量为283.47~335.26 mg/(轴·h),单位面积油雾散发量为4.90~5.29 mg/(m2·h);全面通风结合同机床相连的局部排风的效果好于单独的机床上方2 m处设置局部排风的方式;湿加工和热处理的颗粒粒径比干加工的颗粒粒径小。
关键词:车间机械加工工艺油雾颗粒浓度散发量粒径分布全面通风局部排风
作者简介:王非,男,1982年生,博士研究生,实验师;*王昕(通信作者),200093上海杨浦区军工路516号上海理工大学E-mail:wangxinshiyun@126.com;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献 [1] PIACITELLI G M,SIEBER W K,O’BRIEN D M,et al.Metal working fluid exposures in small machine shops:an overview[J].AIHAJ-American industrial hygiene association,2001,62(3):356- 370.

  [2] 王文宾,李志锋,戎娜.工业油雾净化方法的研究现状[J].科技风,2014(18):53.

  [3] DONNA J M,WILSON W S H,SUN J C,et al.Experimental and analytical efforts to characterize cutting fluid mist formation and behavior in machining[J].Applied occupational & environmental hygiene,2003,18(11):842- 854.

  [4] CHEN Z,ATMADI A,STEPHENSON D A,et al.Analysis of cutting fluid aerosol generation for environmentally responsible machining[J].CIRP annals,2000,49(1):53- 56.

  [5] SUJOVA E.Contamination of the working air via metalworking fluids aerosols[J].Engineering review,2012,32(1):9- 15.

  [6] KERMANIZADEH A,BALHARRY D,WALLIN H,et al.Nanomaterial translocation-the biokinetics,tissue accumulation,toxicity and fate of materials in secondary organs—a review[J].Critical reviews in toxicology,2015,45(10):837- 872.

  [7] CHIA T P,TON S S,LIOU S J,et al.Effectiveness of engineering interventions in decreasing worker exposure to metalworking fluid aerosols[J].Science of the total environment,2019,659(4):923- 927.

  [8] ANDERSSON E M,JARVHOLM B,LILLIENBERG L,et al.Respiratory symptoms and exposure-response relations in workers exposed to metalworking fluid aerosols.[J].The annals of occupational hygiene,2010,54(4):403- 411.

  [9] TRAN C,BUCHANAN D,CULLEN R,et al.Inhalation of poorly soluble particles.Ⅱ.Influence of particle surface area on inflammation and clearance[J].Inhalation toxicology,2000,12(12):1113- 1126.

  [10] LU X,ZHU T,CHEN C,et al.Right or left:the role of nanoparticles in pulmonary disease[J].Internation journal of molecular sciences,2014,15(10):17577- 17600.

  [11] FAN J,LI S,FAN C,et al.The impact of PM2.5 on asthma emergency department visits:a systematic review and meta-analysis[J].Environmental science and pollution research,2016,23(1):843- 850.

  [12] POPE C A,BURNETT R T,THUN M J,et al.Lung cancer,cardiopulmonary mortality,and long-term exposure to fine particulate air pollution[J].JAMA,2002,287(9):1132- 1141.

  [13] WONG C M,TSANG H,LAI H K,et al.Cancer mortality risks from long-term exposure to ambient fine particle[J].Cancer epidemiology biomarkers & prevention,2016,25(5):839- 845.

  [14] Metalworking Fluidssafety and health best practice manual[EB/OL].[2020-06-01].http://www.osha.gov/ SLTC/metalworking fluids Html.

  [15] ZHAO B,WU J.Modeling particle fate in ventilation system—part I:model development[J].Building and environment,2009,44(3):605- 611.

  [16] ZHAO B,WU J.Modeling particle fate in ventilation system—part II:case study[J].Building and environment,2009,44(3):612- 620.

  [17] FAN J N,WANG Y,YANG Y,et al.Stability and accuracy of numerical investigation of droplet motion under local ventilation airflow[J].Building and environment,2018,140:32- 42.

  [18] 王乐.高大空间机械通风类型对污染物控制影响特性研究[D].西安:西安建筑科技大学,2009:43- 63.

  [19] CHEN M R,LIAO P C,CHANG C C,et al.Particle size distributions of oil mists in workplace atmospheres and their exposure concentrations to workers in a fastener manufacturing industry[J].Journal of hazardous materials,2007,146:393- 398.

  [20] 蔡治平,徐宗古,施介宽.大型船体装焊车间焊接烟尘扩散模式理论探讨[J].东华大学学报(自然科学版),2003(2):27- 31.

  [21] CARLSON D H,D’ARCY J B,DASCH J M,et al.Characterization of process air emissions in automotive production plants[J].Journal of occupational and environmental hygiene,2016,13(1):9- 18.

  [22] DASCH J,D’ARCY J,GUNDRUM A,et al.Characterization of fine particles from machining in automotive plants[J].Journal of occupational and environmental hygiene,2005,2(12):609- 625.

  [23] JURELIONIS A,GAGYTÉ L,PRASAUSKAS T,et al.The impact of the air distribution method in ventilated rooms on the aerosol particle dispersion and removal:the experimental approach[J].Energy and buildings,2015,86:305- 313.

  [24] YANG Y,WANG Y,SONG B B,et al.Transport and control of droplets:a comparison between two types of local ventilation airflows[J].Powder technology,2019,345:247- 259.

  [25] 陈远平,李灿,杨维,等.空气中油雾和粉尘自然扩散对比实验研究[J].建筑热能通风空调,2016,35(5):21- 23.

  [26] 张杰.机械加工厂内油性颗粒物特性、分布特征及去除机理研究[D].天津:天津大学,2017:30- 34.

  [27] CHEN R,SHI X F,BAI R,et al.Airborne nanoparticle pollution in a wire electrical discharge machining workshop and potential health risks[J].Aerosol air quality research,2015,15:284- 294.

  [28] DASCH J M,ANG C C,MOOD M,et al.Variable affecting mist generation from metal removal fluids[J].Lubrication engineering,2002,58(3):10- 17.

  [29] SUTHERLAND J W,GUNTER K L,SUN J,et al.Character and behavior of mist generated by application of cutting fluid to a rotating cylindrical workpiece,part 1:model development[J].Journal of manufacturing science and engineering:transactions of the ASME,2004,126(3):417- 425.

  [30] SUTHERLAND J W,GUNTER K L,JU C,et al.Character and behavior of mist generated by application of cutting fluid to a rotating cylindrical workpiece,part 2:experimental validation[J].Journal of manufacturing science and engineering:transactions of the ASME,2004,126(3):426- 434.

  [31] WANG F,LI Z H,WANG P,et al.Experimental study of oil particle emission rate and size distribution during milling[J].Aerosol science and technology,2018,52(11):1308- 1319.

  [32] 王鹏.工业油雾颗粒散发特性及其扩散分布的实验研究[D].上海:上海理工大学,2018:29- 35.

  [33] KALIMERI K K,BARTZIS J G,SAKELLARIS I A,et al.Investigation of the PM2.5,NO2 and O3 I/O ratios for office and school microenvironments[J].Environmental research,2019,179:108791.

  [34] 肖晔.严寒地区城市住区内PM2.5浓度分布及室内外关联性研究[D].哈尔滨:哈尔滨工业大学,2019:26- 27.
Field measurement of oil mist particle concentration distribution in machining workshops
Wang Fei Wu Zhao Jiang Xin Zhou Yujing Wang Xin Song Bingyan Shao Minglei
(University of Shanghai for Science and Technology SAIC Anyue Energy Saving Technology Co., Ltd.)
Abstract: In order to evaluate the exposure level of oil mist particle concentration in the machining workshop, the article selects three different processes(dry processing, wet processing, wet processing with heat treatment) of the automotive component workshops for on-site measurements, and studies the concentration distribution characteristics of oil mist particles produced by the production process. The results show that the concentration of total suspended particulate matter in the three workshop operation areas is 0.558, 0.799, 0.739 mg/m3, respectively. The average particle size of the particulate matter in three workshops is about 6.4, 5.9, 5.8 μm, respectively. The mass emission rate of the machine bed shaft is 283.47 to 335.26 mg/(axis·h), and the emission rate per unit area is 4.90 to 5.29 mg/(m2·h). The combined effect of comprehensive ventilation and local exhaust connected to the machine tool is better than the local exhaust mode set 2 m above the separate machine tool. The particle size of oil mist in wet processing and heat treatment is smaller than that in dry processing.
Keywords: workshop; machining production technology; oil mist particle; concentration; emission rate; particle size distribution; comprehensive ventilation; local exhaust;
711 0 0
文字:     A-     A+     默认 取消