多热源联网供热系统优化运行方案分析

作者:高新勇 吴畅 李成磊 黄平平 孙士恩
单位:华电电力科学研究院有限公司 浙江浙能技术研究院有限公司
摘要:以东北某多热源联网供热系统为例,对多热源联网供热系统的优化运行方案进行了分析。从节能角度分析,当热负荷小于161.2 MW时,采用350 MW抽凝机组作为主热源供热;当热负荷大于等于161.2 MW时,采用200 MW光轴机组作为主热源供热,且首先采用350 MW抽凝机组作为调峰热源补充供热,其次采用200 MW抽凝机组作为调峰热源补充供热。从电力调峰角度分析,当热负荷小于64 MW时,采用200 MW抽凝机组作为主热源供热;当热负荷为64~69 MW时,采用200 MW光轴机组作为主热源供热;当热负荷继续增大时,应采用200 MW抽凝机组和200 MW光轴机组同时作为主热源供热,且先使200 MW光轴机组以最低电负荷运行,其次使200 MW抽凝机组以最低电负荷运行,采用350 MW抽凝机组作为调峰热源补充供热。
关键词:多热源联网供热优化运行节能电力调峰发电边际效益抽凝机组光轴机组
作者简介:作者简介:高新勇,男,1987年生,硕士研究生,高级工程师;*孙士恩(通信作者)311100浙江省杭州市余杭区余杭塘路2159号浙能创业大厦E-mail:shensun@126.com;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献参考文献

[1] 聂海宁,黄小琳,曾智勇.中国清洁能源供热现状及发展前景[J].能源与节能,2018(12):87-89.

[2] 王振铭.热电联产分布式能源与能源节约[J].节能,2005,24(5):4-9.

[3] 王魁吉,孙玉庆.多热源环网供热技术[J].暖通空调,2002,32(6):83-86.

[4] 李梦沙,李德英.集中供暖多热源联网运行系统浅析[J].区域供热,2013(4):66-69.

[5] 吕泉,胡炳廷,王海霞,等.风热冲突下热电厂供热问题研究[J].电力自动化设备,2017,37(6):236-244.

[6] 李祥立,孙宗宇,邹平华.多热源环状热水管网的水力计算与分析[J].暖通空调,2004,34(7):97-101.

[7] 许征,相克政,胡静洋.多热源联网运行仿真模拟[J].煤气与热力,2019,39(5):11-13,41.

[8] 秦绪忠,江亿.多热源并网供热的水力优化调度研究[J].暖通空调,2001,31(1):11-16.

[9] 米二龙.多热源联合供热在高寒地区优化改造运行应用实例[J].节能,2019,38(1):54-58.

[10] 朱旭,方豪,王春林.赤峰市主城区多热源联网可行性研究[J].区域供热,2019(6):54-58.

[11] 石志云,陈海平,王忠平,等.热电联产机组热电成本分摊理论综述[J].节能,2012,31(8):12-16,2.

[12] 国家能源局东北监管局.东北电力辅助服务市场运营规则[Z].沈阳:国家能源局东北监管局,2016:4-6.
Analysis of optimal operation scheme of multi-heat source interconnected heating systems
Gao Xinyong Wu Chang Li Chenglei Huang Pingping Sun Shien
(Huadian Electric Power Research Institute Co., Ltd. Zhejiang Energy R & D Co., Ltd.)
Abstract: In this paper, taking a multi-heat source interconnected heating system in Northeast China as an example, the optimal operation scheme is analysed. From the perspective of energy saving, when the heating load is less than 161.2 MW, the 350 MW extraction and condensation unit is used as the main heat source for heat supply. When the heating load is greater than or equal to 161.2 MW, the 200 MW optical axis unit is used as the main heat source for heat supply, and the 350 MW extraction and condensation unit is used first as a peak-shaving heat source for supplementary heat supply, followed by a 200 MW extraction and condensation unit as a peak-shaving heat source for supplementary heat supply. From the perspective of power peak regulation, when the heating load is less than 64 MW, the 200 MW extraction and condensation unit is used to supply heat as the main heat source. When the heating load is 64 to 69 MW, the 200 MW optical axis unit is used to supply heat as the main heat source. When the heating load continues to increase, the 200 MW extraction and condensation unit and the 200 MW optical axis unit should be used to supply heat as the main heat source at the same time, and the 200 MW optical axis unit should be operated at the minimum electrical load first, and then the 200 MW extraction and condensation unit should be operated at the minimum electrical load, and the 350 MW extraction and condensation unit should be used as a peak-shaving heat source for supplementary heating.
Keywords: multi-heat source interconnected heating; optimal operation; energy saving; power peak regulation; marginal benefit of power generation; extraction and condensation unit; optical axis unit;
763 0 0
文字:     A-     A+     默认 取消