陶瓷膜及其组合工艺在饮用水处理中的研究进展
0 引言
全球地表水水质的不断恶化和饮用水水质标准的日益严格,使低压膜过滤技术(微滤MF/超滤UF)在地表水处理中的应用得到迅猛发展。20世纪80年代以来,在有机高分子膜(主要为PES或PVDF中空纤维膜)占据主导地位的膜分离技术领域,无机陶瓷膜因其耐高温、耐化学腐蚀、抗污染能力强、机械强度好、孔径分布窄、使用寿命长等特点(见表1),逐步成为近几十年来新型膜材料研究和发展的重要方向,已成功应用于石油化工、食品、生物、医药等领域。陶瓷膜昂贵的价格使其最初仅在工业生产中得到应用,但随着陶瓷膜的规模化和商品化生产,其价格不断下跌,应用范围越来越广,在饮用水处理中的应用逐渐成为可能,相关研究也日益增多
本文主要针对近年来无机陶瓷膜技术的研究状况,对单独陶瓷膜及其常用组合工艺的特点与优势,污染物去除效果、缓解膜污染的作用和机理等方面进行了总结和介绍。
表1 陶瓷膜与有机聚合膜性能对比
![表1 陶瓷膜与有机聚合膜性能对比[1]](/User/GetImg.ashx?f=GSPS/5466//1607op01145_34_11500.jpg&uid=WEEvREcwSlJHSldTTEYzVTE0ZUVvYlluMnR6c3RrM0ExelFmVm1LQkdYcz0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!)
1 单独陶瓷膜工艺
陶瓷膜通常具有3层结构(多孔支撑层、过渡层及分离层,如图1),呈非对称结构,主要由金属氧化物(Al2O3、TiO2、ZnO2等)材料制备而成,过滤精度涵盖微滤、超滤、“细孔”超滤及纳滤级别,市政最常用的为微滤和超滤膜,能够有效截留水中的颗粒物、胶体、微生物和大分子有机物等污染物
陶瓷膜去除污染物的机理与有机膜相似,主要是依靠尺寸排阻的物理截留作用,尺寸大于膜孔径的污染物均能得到良好的去除。单独陶瓷膜工艺对水中总悬浮固体、浊度、细菌和藻类的去除率均高于99%
单从尺寸排阻的分离机理出发,陶瓷膜和有机膜对水中污染物分子质量的截留效果仅受到膜截留分子质量(Molecular weight cut-off,MWCO)大小的影响,而与膜材料无关。MWCO同为8 000的陶瓷和有机超滤膜对DOC和UV254的去除率均在40%上下,无显著差异
天然水体中的腐殖质类物质和生物高分子是造成MF/UF可逆与不可逆污染的重要因素,但膜材料的不同造成陶瓷膜与有机膜在污染特性方面存在差异。Lee等
对于陶瓷膜来说,腐殖质类物质比生物高分子更易造成膜孔堵塞,形成不可逆污染
虽然陶瓷膜较有机膜在某些污染物去除效果和膜污染控制方面有一定优势,但单独陶瓷膜工艺对于地表水中溶解性有机物的去除效果有限。因此,陶瓷膜工艺通常与其他工艺组合使用,目前研究较多的预处理工艺主要包括混凝、臭氧、光催化、生物活性炭等。预处理的主要目的是提高目标污染物的去除效率并减缓膜污染,降低陶瓷膜工艺的运行维护费用。
2 混凝/陶瓷膜组合工艺
混凝/陶瓷膜组合工艺一般分两类,一是将混凝形成的矾花沉淀后再进行膜过滤;二是混凝后不去除矾花直接进行过滤,即在线混凝/陶瓷膜组合工艺。两者相比,在线混凝在保证处理效果的前体下能减少加药量、缩短混凝时间,且无需沉淀环节,降低基建费用,具有广阔的应用前景
大量研究表明,混凝作为陶瓷膜前处理工艺改变了原水中悬浮颗粒的尺寸分布,增强了陶瓷膜对小颗粒和溶解性污染物的去除作用
关于膜污染方面,膜表面滤饼层的结构和性质对膜污染程度及膜通量的变化起着决定性作用
陶瓷膜抗污染能力强,且混凝减轻了污染物与膜表面的相互作用,所以在混凝/陶瓷膜组合工艺中,滤饼层的形成所造成的可逆膜污染可以通过定期高强度的水力反冲洗大幅减轻甚至消除。而在实际生产中,膜的不可逆污染程度决定了膜工艺长期运行的能耗及可持续运行能力,和工艺运行成本密切相关,因此,关于水力不可逆膜污染的研究更值得重视。Kimura等
综上,混凝/陶瓷膜组合工艺能够提高各种污染物的去除效率,同时有效缓解膜污染,处理效果优于常规混凝或单独膜工艺,而其中在线混凝/陶瓷膜组合能节省加药量、缩短混凝时间,减少工艺占地面积并降低基建费用,是未来发展的趋势。如何改善絮体的组成和结构,如投加新型助凝剂等
3 臭氧/陶瓷膜组合工艺
目前有关臭氧/陶瓷膜组合工艺的研究中,绝大部分是将臭氧作为陶瓷膜工艺处理微污染水源的预处理工艺,即在膜前的水流中直接投加臭氧进行预氧化,为保证水中溶解态臭氧的浓度,通常要加入过量臭氧,且需要臭氧尾气破坏装置。最近有研究者探索了一种新型浸没式臭氧/陶瓷膜组合工艺
臭氧能够通过直接氧化和间接氧化作用促进有机物的去除,有效控制膜污染,同时陶瓷膜对臭氧氧化具有催化作用,可以促进臭氧的有效利用。
研究显示,臭氧氧化和陶瓷膜过滤间能产生协同作用,对水中DOC、UV254、三卤甲烷(TTHMs)和卤乙酸(HAAs)的去除效果均优于单独臭氧或单独陶瓷膜过滤,对分子质量远低于陶瓷膜截留分子质量的溶解性药物
关于臭氧/陶瓷膜组合工艺延缓膜污染的机理可以归结为三个方面的原因,首先是臭氧能在膜表面分解产生强氧化性的羟基自由基·OH,氧化分解膜表面的有机污染物,缓解膜污染;其次臭氧氧化减少了易造成膜污染的大分子有机物
综上,臭氧/陶瓷膜组合工艺是一种有效的处理微污染水源水的工艺,陶瓷膜的抗氧化性能弥补了传统有机聚合膜的弊端,同时还能促进臭氧的氧化作用,提高对有机物的降解效率。臭氧应用于饮用水处理可以避免生成氯化消毒副产物,但可能产生溴酸盐问题,原水pH和溴离子浓度越高、臭氧投加量越大、膜孔径越小的臭氧/陶瓷膜组合工艺中溴酸盐的生成量越高
4 光催化/陶瓷膜组合工艺
光催化与膜分离技术的结合,即光催化膜反应器(Photocatalytic membrane reactor,PMR),是一种新型组合工艺,不仅保留了两种工艺各自的优势,更弥补了缺陷,近年来在水及污染处理中发展迅速
TiO2由于其抗化学和光腐蚀,无毒价廉等优势,且已商品化,是悬浮式PMR中最常用的光催化剂。但TiO2仅能吸收波长较短的紫外光(占太阳光不到5%),太阳能利用率低,因此许多研究通过金属离子参杂改性或与碳材料复合(如石墨烯类、碳纳米管等)等
PMR反应器对膜材料的化学稳定性及耐热性能等有一定要求。传统有机膜易受UV辐照及光催化产生的自由基的损害,造成膜结构破坏
悬浮式PMR最大的优势在于反应器中催化剂与污染物接触面积大,接触时间充分,具有传质效率高,光源利用率好的特点
综上,光催化/陶瓷膜的组合工艺对于多种污染物均有很好的降解效果,通常能将污染物彻底矿化,不产生有毒副产物,同时光催化/陶瓷超滤膜即可取代传统有机纳滤工艺,在污染物去除效果、水回收率和能耗方面都有一定优势
5 多元陶瓷膜组合工艺
针对目前饮用水水源污染严重的现状,二元陶瓷膜组合工艺可能无法达到水质要求,而多元陶瓷膜组合工艺可强化常规及新型污染物的去除效果,满足日益严格的水质标准。多元组合工艺通常由混凝、气浮、臭氧、活性炭中的几种与陶瓷膜过滤组合,多种工艺间相互影响,协同作用,可根据水质污染状况选择合适的组合工艺的单元,尤适用于微污染水源水处理。
应对水源季节性的浊度与藻类污染,Hg等
多元陶瓷膜组合工艺能够满足饮用水水质安全,简化并缩短微污染水源的处理工艺流程,减少基建费用与占地面积,尤其适用于水厂的升级改造,在未来的给水处理领域具有广阔的发展前景和研究价值。
6 总结与展望
陶瓷膜较有机聚合膜在污染物去除效果和膜污染控制方面有一定优势,但单独陶瓷膜工艺仍存在种种不足。陶瓷膜组合工艺的处理效果及抗污染性能均优于单独陶瓷膜工艺,组合工艺的选择应当视原水水质条件及处理目标、各工艺适用性、现场条件和经济技术分析而最终确定,应尽量达到各单元工艺互补促进的效果,在保证污染物去除率的同时,尽可能减少对膜的不可逆污染,从而延长陶瓷膜使用寿命并降低运行成本。组合工艺尤其适用于微污染水源水处理,不仅出水水质好,还能缩短水处理工艺链,节省占地面积和基建费用,适应于未来饮用水行业发展的需要。
为尽快实现陶瓷膜组合工艺的大规模应用,还需对以下课题进行深入探讨:
(1)膜污染仍是陶瓷膜组合工艺中不可忽视的问题,尤其不可逆膜污染会直接导致系统的运行成本增加,甚至降低工艺的使用寿命。因此组合工艺对不可逆膜污染的控制效果和影响因素有待进一步研究。
(2)陶瓷膜单位体积内膜面积填充率低,价格昂贵,一般是有机膜的几倍甚至更高。如何进一步完善膜组件结构,开发高填充率,高性价比的陶瓷膜组件是陶瓷膜技术能否得到广泛应用的关键问题之一。
(3)目前,对于陶瓷膜及其组合工艺的研究多限于实验室小试及中试研究,无法准确体现大规模运行时的真实情况,仍需大量运行经验和数据对大规模运行时的处理效果、通量、膜污染情况和经济技术指标进行综合评价,并不断优化运行条件。
[1] Hg A,Ludwig J,Beery M.The use of integrated flotation and ceramic membrane filtration for surface water treatment with high loads of suspended and dissolved organic matter.Journal of Water Process Engineering,2015,6:129~135
[2] Sondhi R,Bhave R,Jung G.Applications and benefits of ceramic membranes.Membrane Technology,2003,(11):5~8
[3] 周明,孟广耀,彭定坤,等.无机陶瓷膜.膜科学与技术,1992,12 (2):1~9
[4] Bottino A,Capannelli C,Del Borghi A,et al.Water treatment for drinking purpose:ceramic microfiltration application.Desalination,2001,141(1):75~79
[5] Li M,Wu G,Guan Y,et al.Treatment of river water by a hybrid coagulation and ceramic membrane process.Desalination,2011,280(1~3):114~119
[6] Lee S,Cho J.Comparison of ceramic and polymeric membranes for natural organic matter(NOM)removal.Desalination,2004,160(3):223~232
[7] Guo J,Wang L,Zhu J,et al.Highly integrated hybrid process with ceramic ultrafiltration-membrane for advanced treatment ofdrinking water:A pilot study.Journal of Environmental Science and Health,Part A,2013,48:1413~1419
[8] Shang R,Verliefde A R D,Hu J,et al.The impact of EfOM,NOM and cations on phosphate rejection by tight ceramic ultrafiltration.Separation and Purification Technology,2014,132:289 ~294
[9] Fujioka T,Khan S J,Mcdonald J A,et al.Nanofiltration of trace organic chemicals:A comparison between ceramic and polymeric membranes.Separation and Purification Technology,2014,136:258~264
[10] Lee S,Kim J.Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes.Water Research,2014,48:43~51
[11] Lee S,Dilaver M,Park P,et al.Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models.Journal of Membrane Science,2013,432:97~105
[12] Hofs B,Ogier J,Vries D,et al.Comparison of ceramic and polymeric membrane permeability and fouling using surface water.Separation and Purification Technology,2011,79(3):365~374
[13] Shang R,Vuong F,Hu J,et al.Hydraulically irreversible fouling on ceramic MF/UF membranes:Comparison of fouling indices,foulant composition and irreversible pore narrowing.Separation and Purification Technology,2015,147:303~310
[14] Zhang X,Fan L,Roddick F A.Understanding the fouling of a ceramic microfiltration membrane caused by algal organic matter released from Microcystis aeruginosa.Journal of Membrane Science,2013,447:362~368
[15] Qu F,Liang H,Wang Z,et al.Ultrafiltration membrane fouling by extracellular organic matters(EOM)of Microcystis aeruginosa in stationary phase:Influences of interfacial characteristics of foulants and fouling mechanisms.Water Research,2012,46(5):1490~1500
[16] 董秉直,刘风仙,桂波.在线混凝处理微污染水源水的中试研究.工业水处理,2008,(1):40~43
[17] 朱寅春.常用超滤膜组合工艺在饮用水处理中的进展及应用.净水技术,2011,(5):72~75
[18] Konieczny K,Bodzek M,Rajca M.A coagulation-MF system for water treatment using ceramic membranes.Desalination,2006,198(1~3):92~101
[19] Shirasaki N,Matsushita T,Matsui Y,et al.Comparison of removal performance of two surrogates for pathogenic waterborne viruses,bacteriophage Qβand MS2,in a coagulation-ceramic microfiltration system.Journal of Membrane Science,2009,326 (2):564~571
[20] Meyn T,Leiknes T O.MS2Removal from High NOM Content Surface Water by Coagulation-Ceramic Microfiltration,for Potable Water Production.AIChE Journal,2012,58(7):2270~2281
[21] Rakruam P,Wattanachira S.Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration.Journal of Environmental Sciences,2014,26(3):529~536
[22] Kimura M,Matsui Y,Saito S,et al.Hydraulically irreversible membrane fouling during coagulation-microfiltration and its control by using high-basicity polyaluminum chloride.Journal of Membrane Science,2015,477:115~122
[23] Zhang X,Fan L,Roddick F A.Feedwater coagulation to mitigate the fouling of a ceramic MF membrane caused by soluble algal organic matter.Separation and Purification Technology,2014,133:221~226
[24] Wang J,Guan J,Santiwong S R,et al.Characterization of floc size and structure under different monomer and polymer coagulants on microfiltration membrane fouling.Journal of Membrane Science,2008,321(2):132~138
[25] Yu W,Liu T,Gregory J,et al.Influence of flocs breakage process on submerged ultrafiltration membrane fouling.Journal of Membrane Science,2011,385~386:194~199
[26] Zhao B,Wang D,Li T,et al.Effect of floc structure and strength on membrane permeability in the hybrid coagulationmicrofiltration process.Water Science&Technology:Water Supply,2011,11(1):97
[27] Choi Y H,Kim H S,Kweon J H.Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes.Separation and Purification Technology,2008,62(3):529~534
[28] Xu W,Gao B.Effect of shear conditions on floc properties and membrane fouling in coagulation/ultrafiltration hybrid process—The significance of Alb species.Journal of Membrane Science,2012,415~416:153~160
[29] Xu W,Gao B,Wang Y,et al.Influences of polysilicic acid in Al13species on floc properties and membrane fouling in coagulation/ultrafiltration hybrid process.Chemical Engineering Journal,2012,181~182:407~415
[30] Zhao S,Gao B,Yue Q,et al.Evaluation of floc properties and membrane fouling in coagulation-ultrafiltration system:The role of enteromorpha polysaccharides.Desalination,2015,367:126 ~133
[31] Zhao S,Gao B,Yue Q,et al.Influence of Enteromorpha polysaccharides on variation of coagulation behavior,flocs properties and membrane fouling in coagulation-ultrafiltration process.Journal of Hazardous Materials,2015,285:294~303
[32] Szymanska K,Zouboulis A I,Zamboulis D.Hybrid ozonation-microfiltration system for the treatment of surface water using ceramic membrane.Journal of Membrane Science,2014,468:163 ~171
[33] Alpatova A L,Davies S H,Masten S J.Hybrid ozonation-ceramic membrane filtration of surface waters:The effect of water characteristics on permeate flux and the removal of DBP precursors,dicloxacillin and ceftazidime.Separation and Purification Technology,2013,107:179~186
[34] Karnik B S,Davies S H,Baumann M J,et al.Use of Salicylic Acid as a Model Compound to Investigate Hydroxyl Radical Reaction in an Ozonation-Membrane Filtration Hybrid Process.Environmental Engineering Science,2007,24(6):852~860
[35] Karnik B S,Davies S H,Baumann M J,et al.The effects of combined ozonation and filtration on disinfection by-product formation.Water Research,2005,39(13):2839~2850
[36] Song Y,Dong B,Gao N,et al.Huangpu River water treatment by microfiltration with ozone pretreatment.Desalination,2010,250(1):71~75
[37] Kim J,Davies S H R,Baumann M J,et al.Effect of ozone dosage and hydrodynamic conditions on the permeate flux in a hybrid ozonation-ceramic ultrafiltration system treating natural waters.Journal of Membrane Science,2008,311(1~2):165~172
[38] Moslemi M,Davies S H,Masten S J.Bromate formation in a hybrid ozonation-ceramic membrane filtration system.Water Research,2011,45(17):5529~5534
[39] Zhang X,Fan L,Roddick F A.Effect of feedwater pre-treatment using UV/H2O2for mitigating the fouling of a ceramic MF membrane caused by soluble algal organic matter.Journal of Membrane Science,2015,493:683~689
[40] Wang Z Y,Wang L,Yao L F,et al.Membrane Separation Coupled with Photocatalysis for Water Supply and Wastewater Treatment.Advanced Materials Research,2013,671~674:2571~2574
[41] Athanasekou C P,Moustakas N G,Morales-Torres S,et al.Ceramic photocatalytic membranes for water filtration under UV and visible light.Applied Catalysis B:Environmental,2015,178 :12~19
[42] 田蒙奎,尚百伟,陶文亮.光催化高级氧化与无机陶瓷膜分离技术耦合的研究.环境污染与防治,2012,(11):40~44
[43] Romanos G E,Athanasekou C P,Likodimos V,et al.Hybrid Ultrafiltration/Photocatalytic Membranes for Efficient Water Treatment.Industrial&Engineering Chemistry Research,2013,52(39):13938~13947
[44] Sarasidis V C,Plakas K V,Patsios S I,et al.Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor.Influence of operating parameters.Chemical Engineering Journal,2014,239:299~311
[45] Guo B,Pasco E V,Xagoraraki I,et al.Virus removal and inactivation in a hybrid microfiltration-UV process with a photocatalytic membrane.Separation and Purification Technology,2015,149 :245~254
[46] Chong M N,Jin B,Chow C W K,et al.Recent developments in photocatalytic water treatment technology:A review.Water Research,2010,44(10):2997~3027
[47] Benotti M J,Stanford B D,Wert E C,et al.Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water.Water Research,2009,43(6):1513~1522
[48] Stancl H O,Hristovski K,Westerhoff P.Hexavalent Chromium Removal Using UV-TiO2/Ceramic Membrane Reactor.Environmental Engineering Science,2015,32(8):676~683
[49] Mozia S.Photocatalytic membrane reactors(PMRs)in water and wastewater treatment.Separation and Purication Technology,2010,73(2):71~91
[50] Kumakiri I,Diplas S,Simon C,et al.Photocatalytic Membrane Contactors for Water Treatment.Industrial&Engineering Chemistry Research,2011,50(10):6000~6008
[51] Moustakas N G,Katsaros F K,Kontos A G,et al.Visible light active TiO2 photocatalytic filtration membranes with improved permeability and low energy consumption.Catalysis Today,2014,224:56~69
[52] Zhang X,Guo J,Wang L,et al.In situ ozonation to control ceramic membrane fouling in drinking water treatment.Desalination,2013,328:1~7
[53] Reungoat J,Escher B I,Macova M,et al.Ozonation and biological activated carbon filtration of wastewater treatment plant effluents.Water Research,2012,46(3):863~872
[54] Andersson A,Laurent P,Kihn A,et al.Impact of temperature on nitrification in biological activated carbon(BAC)filters used for drinking water treatment.Water Research,2001,35(12):2923~2934
[55] Fan X,Tao Y,Wang L,et al.Performance of an integrated process combining ozonation with ceramic membrane ultra-filtration for advanced treatment of drinking water.Desalination,2014,335(1):47~54