碳中和城市建筑能源系统2):网络篇

作者:龙惟定
单位:同济大学
摘要:本文是碳中和城市建筑能源系统系列文章的第二篇,分别概要介绍了城市能源系统中的电网、热网和燃气网在碳中和背景下的新概念、新技术及新方法。强调未来的能源网以电网为主,三网融通,构成城区的能源互联网。综述了智能电网的灵活性、热泵在智能电网中的重要作用、城区能源总线中的负荷多样性和保持网络水温的技术、基于CO2的区域能源网络,以及城区层面氢燃料的制备、输送、储存等技术问题。
关键词:碳中和建筑能源系统智能电网灵活性热泵能源总线负荷多样性氢气
作者简介:龙惟定,男,1946年生,硕士研究生,教授201112上海市闵行区联航路1505弄5号楼1607室E-mail:weidinglong@tongji.edu.cn:;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] IEA.Energy transitions require innovation in power system planning[EB/OL].[2022-02-15].https://www.iea.org/articles/energy-transitions-require-innovation-in-power-system-planning.

[2] 甘森,刘育权,文福拴,等.弹性电力系统及其恢复策略研究的理论与实践[M].北京:科学出版社,2016:1- 35.

[3] 王雪辰.中国能源大数据报告(2021年)——电力篇[R/OL].(2021-06-23)[2022-02-16].https://power.in-en.com/html/power-2389855.shtml.

[4] Wikipedia.Capacity factor[EB/OL].(2021-12-27)[2022-02-17].https://en.wikipedia.org/wiki/Capacity_factor.

[5] USSI.Capacity factor[EB/OL].[2022-02-17].https://www.myussi.com/glossary/capacity-factor/.

[6] AHMADIAHANGAR R,ROSIN A,PALU I,et al.Demand-side flexibility in smart grid[M].Singapore:Springer Nature Singapore Pte Ltd.,2020:16- 26.

[7] 界面新闻.全球首条超公里级高温超导电缆投运[EB/OL].(2021-12-21)[2022-02-20].https://baijiahao.baidu.com/s?id=1719846733994327375 &wfr=spider&for=pc.

[8] TOM E,LISA S,GREG L.Determining utility system value of demand flexibility from grid-interactive efficient buildings[R/OL].(2021-06-28)[2022-02-20].https://escholarship.org/uc/item/0s30v1hj.

[9] LAZZARIN R.Technological innovations in heat pump systems[J].International journal of low-carbon technologies,2007(7):262- 288.

[10] Bundesamtfur Wirtschaft und Ausfuhrkontrolle.Warmepumpen mit Pruf-/Effizienznachweis,Heizen mit Erneuerbaren Energien[R/OL].(2020-12-24)[2022-02-27].https://www.bafa.de/DE/Energie/energie_node.html;jsessionid=C79D4FBEF235DAE A9C8F0941815FB95A.1_cid362.

[11] AHRI.Standard for performance rating of water-chilling and heat pump water-heating packages using the vapor compression cycle:AHRI Standard 551/591:2020[S/OL].[2022-03-02].https://www.ahrinet.org/Portals/_Appleseed/documents/Standards/AHRI_Standard_551-591_SI_2020.pdf.

[12] EHPA Testing Regulation.Testing of air/water heat pumps,terms,test conditions and test method based on EN 14825,EN 14511-1 to 4 and EN 12102-1[S/OL].[2022-03-03].https://www.ehpa.org/fileadmin/user_upload/EHPA_TestReg_AW_HP_V2.4a_20210607_.pdf.

[13] EHPA.Regulations for granting the international quality label for electrically driven heat pumps[S/OL].[2022-03-03].https://www.ehpa.org/fileadmin/user_upload/EHPA_QL_REGULATION_V19_20220122.pdf.

[14] DOMITROVIC R,HUNT W,AMARNATH A.Next generation heat pump systems with enhanced smart grid response capability for the United States market[EB/OL].[2022-03-04].https://hpc2017.org/wp-content/uploads/2017/08/K.2.3.1- Next- Generation- Heat- Pump- Systems- with- Enhanced- Smart- Grid- Response- Capability- for- the- United- States.pdf.

[15] 李椿,王志华,王沣浩,等.CO2热泵研究现状及展望[J].制冷学报,2018,39(5):1- 9.

[16] BENATO A,STOPPATO A.Pumped thermal electricity storage:a technology overview[J].Thermal science and engineering progress,2018,6:301- 315.

[17] FISCHER D,MADANI H.On heat pumps in smart grids:a review[J].Renewable and sustainable energy reviews,2017,70:342- 357.

[18] 龙惟定,白玮,范蕊,等.疫情之后:EBus与第5代区域供热供冷系统的发展[J].暖通空调,2020,50(10):1- 13.

[19] 龙惟定.碳中和城市建筑能源系统(1):能源篇[J].暖通空调,2022,52(3):2- 16.

[20] FISCHER D,TRIEBEL M,SELINGER-LUTZ O.A concept for controlling heat pump pools using the smart grid ready interface[C]//2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe),2018:1- 6.

[21] 龙惟定.人工智能技术在建筑能源管理中的应用场景[J].建筑科学,2021,37(2):127- 145.

[22] WIRTZ M,KIVILIP L,REMMEN P.Bidirectional low temperature networks in urban districts:a novel design methodology based on mathematical optimization[J].Journal of physics:conference series,2019,1343:012111.

[23] ABUGABBARA M,LINDHE J.A novel method for designing fifth-generation district heating and cooling system[C]//E3S Web of Conferences,Cold Climate HVAC & Energy 2021,2021:09001.

[24] ZARIN PASS R,WETTER M,PIETTE M A.A thermodynamic analysis of a novel bidirectional district heating and cooling network[J].Energy,2018,144:20- 30.

[25] WIRTZ M,NEUMAIER L,REMMEN P.Temperature control in 5th generation district heating and cooling networks:an MILP-based operation optimization[J].Applied energy,2021,288:116608.

[26] IRENA.Energy as a service:innovation landscape brief[R/OL].[2022-04-01].https://www.irena.org/ - /media/ Files/ IRENA/ Agency/ Publication/ 2020/ Jul/ IRENA_Energy- as- a- Service_2020.pdf.

[27] KNIPSCHEER M.Potential tariff structures for fifth generation district heating and cooling[EB/OL].[2022-05-10].https://repository.tudelft.nl/islandora/object/uuid%3A1c5992d3-4a0c-4640-b49a-35338a83d09a.

[28] WEBER C,FAVRAT D.Conventional and advanced CO2 based district energy systems[J].Energy,2010,35:5070- 5081.

[29] HENCHOZ S.Potential of refrigerant based district heating and cooling networks[EB/OL].[2022-04-20].https://infoscience.epfl.ch/record/217013.

[30] HENCHOZ S,FAVRAT D,MARECHAL F,et al.Novel district heating and cooling energy network using CO2 as a heat and mass transfer fluid[C/OL]//12th IEA Heat Pump Conference.[2022-04-20].https://infoscience.epfl.ch/record/231699.

[31] 永野貴大,天野嘉春.CO2 を熱輸送媒体とする地域エネルギー供給システムの基礎的検討[C]//日本機械仝論文集,2020:1- 16.

[32] IEA.氢的未来——抓住今天的机遇[C/OL]//日本G20峰会.[2022-05-01].http://www.compressor.cn/uploadfile/2019/0822/20190822045211709.pdf.

[33] ADAM P,HEUNEMANN F,VON DEM BUSSCHE C,et al.Hydrogen infrastructure-the pillar of energy transition[R/OL].[2022-05-10].https://siemens-energy.com.

[34] 郝珍,李闯,朱艳兵,等.中国天然气掺氢可行性分析[R/OL].(2021-12-21)[2022-04-06].https://cn-heipa.com/newsinfo/2256964.html.

[35] BREEZE P.Power system energy storage technologies[M].London:Elsevier Ltd.,2018:69- 77.
Building energy system of carbon neutrality cities (2):Network
Long Weiding
(Tongji University)
Abstract: This article is the second in a series of articles on the building energy system of carbon neutrality cities, outlining new concepts, technologies and approaches for the power grid, heating/cooling and gas networks of urban energy systems in the context of carbon neutrality. It is emphasized that the future energy network is smart-grid-based and the three networks are integrated to form an energy internet in urban areas. The article reviews the flexibility of smart grids, the important role of heat pumps in smart grids, the load diversity in the energy bus(EBus) and the technologies to maintain EBus network water temperature, CO2-based district energy networks, and the technical issues such as preparation, delivery, storage of hydrogen fuel at district level.
Keywords: carbon neutrality; building energy system; smart grid; flexibility; heat pump; energy bus(EBus); load diversity; hydrogen;
1122 0 0
文字:     A-     A+     默认 取消