基于光照自适应的空气源热泵图像识别测霜技术研究
摘要:图像识别技术的发展为空气源热泵换热器测霜提供了一种新的技术途径,然而室外光照环境的变化会影响图像识别测霜的准确性。提出面源补偿光照的方法,选择基准照度面源,以结霜阈值修正系数补偿光照环境影响,开发了基于光照自适应的空气源热泵图像识别测霜技术,并在某实际工程中进行了应用和测试。结果表明,在不同光照环境测试工况下,机组除霜时机基本相同,COP衰减率均为18%,风压差增量在5.45~5.68 Pa范围内波动,解决了室外光照环境变化对图像识别的干扰,为图像识别测霜技术在空气源热泵除霜控制中的应用提供了可行的技术方案。
关键词:空气源热泵测霜技术图像识别光照自适应面源补偿测试工况
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] 马一太,代宝民.空气源热泵用于房间供暖的分析[J].制冷与空调,2013,13(7):6-11.
[2] 王如竹,张川,翟晓强.关于住宅用空气源热泵空调、供暖与热水设计要素的思考[J].制冷技术,2014,34(1).32-41.
[3] WANG W,FENG Y C,ZHU J H,et al.Performances of air source heat pump system for a kind of mal-defrost phenomenon appearing in moderate climate conditions[J].Applied energy,2013,112:1138-1145.
[4] BRIAN P L T,REID R C,SHAH Y T.Frost deposition on cold surfaces[J].Industrial&engineering chemistry fundamentals,1970,9(3):375-380.
[5] 朱佳鹤,孙育英,王伟,等.夏热冬冷地区冬季典型气象条件下空气源热泵“有霜不除”事故特性的实测研究[J].建筑科学,2014,30(12):15-19.
[6] 王伟,李林涛,盖轶静,等.空气源热泵“误除霜”事故简析[J].制冷与空调,2015,15(3):64-71,76.
[7] ÖZKAN D B,ÖZIL E.Experimental study on the effect of frost parameters on domestic refrigerator finned tube evaporator coils[J].Applied thermal engineering.2006,26(17/18):2490-2493.
[8] LEE Y B,RO S T.Frost formation on a vertical plate in simultaneously developing flow[J].Experimental thermal and fluid science,2002,26(8):939-945.
[9] 杨宾.R410A热泵空调器结霜/除霜特性的数值模拟与实验研究[D].天津:天津商业大学,2007:6-7.
[10] 韩志涛,姚杨,马最良,等.空气源热泵误除霜特性的实验研究[J].暖通空调,2006,36(2):15-19.
[11] WANG W,XIAO J,GUO Q C,et al.Field test investigation of the characteristics for the air source heat pump under two typical mal-defrost phenomena[J].Applied energy,2011,88(12):4470-4480.
[12] QU K,KOMORI S,JIANG Y.Local variation of frost layer thickness and morphology[J].International journal of thermal sciences,2006,45:116-123.
[13] HOSODA T,UZUHASHI H.Effects of frost on the heat transfer coefficient[J].HITACH review,1967,16(6):254-255.
[14] 肖婧.新型光电测霜技术在空气源热泵除霜控制中的应用研究[D].北京:北京工业大学,2010:13-96.
[15] ZHENG X J,SHI R,YOU S J.Experimental study of defrosting control method based on image processing technology for air source heat pumps[J].Sustainable cities and society,2019,51:101667.
[2] 王如竹,张川,翟晓强.关于住宅用空气源热泵空调、供暖与热水设计要素的思考[J].制冷技术,2014,34(1).32-41.
[3] WANG W,FENG Y C,ZHU J H,et al.Performances of air source heat pump system for a kind of mal-defrost phenomenon appearing in moderate climate conditions[J].Applied energy,2013,112:1138-1145.
[4] BRIAN P L T,REID R C,SHAH Y T.Frost deposition on cold surfaces[J].Industrial&engineering chemistry fundamentals,1970,9(3):375-380.
[5] 朱佳鹤,孙育英,王伟,等.夏热冬冷地区冬季典型气象条件下空气源热泵“有霜不除”事故特性的实测研究[J].建筑科学,2014,30(12):15-19.
[6] 王伟,李林涛,盖轶静,等.空气源热泵“误除霜”事故简析[J].制冷与空调,2015,15(3):64-71,76.
[7] ÖZKAN D B,ÖZIL E.Experimental study on the effect of frost parameters on domestic refrigerator finned tube evaporator coils[J].Applied thermal engineering.2006,26(17/18):2490-2493.
[8] LEE Y B,RO S T.Frost formation on a vertical plate in simultaneously developing flow[J].Experimental thermal and fluid science,2002,26(8):939-945.
[9] 杨宾.R410A热泵空调器结霜/除霜特性的数值模拟与实验研究[D].天津:天津商业大学,2007:6-7.
[10] 韩志涛,姚杨,马最良,等.空气源热泵误除霜特性的实验研究[J].暖通空调,2006,36(2):15-19.
[11] WANG W,XIAO J,GUO Q C,et al.Field test investigation of the characteristics for the air source heat pump under two typical mal-defrost phenomena[J].Applied energy,2011,88(12):4470-4480.
[12] QU K,KOMORI S,JIANG Y.Local variation of frost layer thickness and morphology[J].International journal of thermal sciences,2006,45:116-123.
[13] HOSODA T,UZUHASHI H.Effects of frost on the heat transfer coefficient[J].HITACH review,1967,16(6):254-255.
[14] 肖婧.新型光电测霜技术在空气源热泵除霜控制中的应用研究[D].北京:北京工业大学,2010:13-96.
[15] ZHENG X J,SHI R,YOU S J.Experimental study of defrosting control method based on image processing technology for air source heat pumps[J].Sustainable cities and society,2019,51:101667.
Research on image recognition frost measurement technology for air-source heat pumps based on light adaptation
Abstract: The development of image recognition technology provides a new technical way for air-source heat pump heat exchanger frost measurement, but changes in the outdoor lighting environment will affect the accuracy of image recognition frost measurement. The method of compensating light by non-point source is proposed, the reference illuminance surface source is selected, the frost threshold correction coefficient is used to compensate for the lighting environmental impact, and the image recognition frost measurement technology for air-source heat pump based on light adaptation is developed and applied to a practical project. The results show that under the test conditions of different lighting environments, the defrosting timing of the unit is basically the same, the COP attenuation rate is 18%, and the increase in wind pressure difference fluctuates in the range of 5.45 to 5.68 Pa, which solves the interference of outdoor lighting environment changes on image recognition, and provides a feasible technical solution for the application of image recognition frost measurement technology in the defrost control of air-source heat pump.
Keywords: air-source heat pump; frost measurement technology; image recognition; light adaptation; non-point source compensation; test condition;
813
0
0