某风荷载控制超高层结构的方案优化设计

引用文献:

程卫红 冯旭光 熊羽豪 陆宜倩. 某风荷载控制超高层结构的方案优化设计[J]. 建筑结构,2023,48(13):104-109.

CHENG Weihong FENG Xuguang XIONG Yuhao LU Yiqian. Scheme optimization design of a super high-rise structure controlled by wind load[J]. Building Structure,2023,48(13):104-109.

作者:程卫红 冯旭光 熊羽豪 陆宜倩
单位:中国建筑科学研究院有限公司 国家建筑工程技术研究中心
摘要:位于深圳市的某超高层办公楼地上54层,结构高度约217m,平面呈扁长形。风荷载作用下短边方向的层间位移角接近规范限值,结构设计主要由风荷载控制。本项目采用抗侧刚度和经济性较好的钢筋混凝土框架-核心筒结构体系。为提高建筑品质,基于结构构件截面最优化目标,从抗侧力体系与楼面框架梁截面两方面展开优化分析。在抗侧体系优化方面,从受力性能和综合经济性角度进行分析,确定采用框架-核心筒+伸臂桁架结构方案,并通过敏感性分析确定最优化的伸臂桁架布置位置。在楼面框架梁截面优化方面,分析了型钢混凝土梁和竖向加腋混凝土梁两种方案的优化效率;并通过考虑混凝土徐变收缩影响的施工模拟分析,进一步降低框架柱和核心筒之间的竖向变形差产生的附加弯矩。通过上述系列措施及配合高强钢筋应用,实现楼面框架梁设计的经济合理。最后利用SAUSAGE软件对优化后的结构方案进行动力弹塑性时程分析,验证该方案结构在大震作用下具有的良好抗震性能。
关键词:超高层结构;风荷载控制;优化分析;伸臂桁架;加腋混凝土梁;收缩徐变;竖向变形差;
作者简介:程卫红,博士,高级工程师,一级注册结构工程师,主要从事复杂结构设计咨询工作、组合结构及装配式结构研究,Email:chengweihong@cabrtech.com。
基金:
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 高层建筑混凝土结构技术规程:JGJ 3—2010[S].北京:中国建筑工业出版社,2010.
[2] 高层建筑混凝土结构技术规程:DBJ 15-92—2013[S].北京:中国建筑工业出版社,2013.
[3] 徐培福,黄吉锋,肖从真,等.带加强层的框架-核心筒结构抗震设计中的几个问题[J].建筑结构学报,1999,20(4):2-10.
[4] 王四清,陈宇,沈蒲生.加强层弯曲刚度对框架-核心筒结构振动特性影响[J].建筑结构,2022,52(22):79-83.
[5] 梁富华,韩建强,甘海峰,等.超高层框架-核心简结构竖向变形差的实测与分析[J].建筑结构学报,2016,37(8):82-89.
[6] 郑七振,康伟,吴探,等.超高层混合建筑结构竖向变形差计算分析[J].建筑结构,2011,41(8):49-53.
[7] 公路钢筋混凝土及预应力混凝土桥涵设计规范:JTG 3362—2018[S].北京:人民交通出版社,2018.
[8] 王玉银,耿悦,张素梅.钢管混凝土收缩徐变模型及计算方法对比分析[J].天津大学学报,2011,44(12):1075-1082.
[9] 董松,闫维明,贾洪,等.超高层钢管混凝土柱框架-核心筒结构施工阶段收缩徐变分析[J].施工技术,2014,43(16):102-107.
[10] 建筑抗震设计规范:GB 50011—2010[S].2016版.北京:中国建筑工业出版社,2016.
Scheme optimization design of a super high-rise structure controlled by wind load
CHENG Weihong FENG Xuguang XIONG Yuhao LU Yiqian
(China Academy of Building Research National Engineering Research Center of Building Technology)
Abstract: The super high-rise office building located in Shenzhen city is about 217m with 54 floors above ground and the plane is rectangular. Under the action of wind load, the inter-story displacement angle of short-side was close to the specification limit, therefore the structural design is mainly controlled by wind load. Reinforced concrete frame-core tube structure system is adopted in the project, since its better lateral rigidity and less cost. In order to improve the quality of building, based on the optimization objective of structural member section, optimization analysis was carried out from two aspects: lateral resisting system and floor frame beam section. In the aspect of the optimization of lateral resisting system, the scheme of frame-core tube structure with outriggers truss was determine to adopt by mechanical performance and comprehensive economy analysis, and the most effective outrigger truss placement was determined through sensitivity analysis. In the aspect of section optimization of floor frame beams, optimized efficiency of steel reinforced concrete beam and haunched concrete beam were separately analyzed. The additional bending moment caused by the vertical deformation difference between frame column and core tube was reduced through the construction simulation analysis considering the effect of concrete creep and shrinkage. Through the series of measures and the application of high-strength steel bars, the design of floor frame beams is economical and reasonable. Finally, a dynamic elastoplastic time history analysis of the optimized scheme was carried out by using SAUSAGE software to verify the good seismic performance of the structural scheme under the action of large earthquakes.
Keywords: super high-rise building; wind load control; optimization analysis; outrigger truss; haunched concrete beam; shrinkage and creep; vertical deformation difference
470 0 0
文字:     A-     A+     默认 取消