PHC管桩在高烈度软土区高层建筑中的设计与应用研究

引用文献:

王义春 王治海 左恩胜 缪长青. PHC管桩在高烈度软土区高层建筑中的设计与应用研究[J]. 建筑结构,2022,48(14):124-130,16.

WANG Yichun WANG Zhihai ZUO Ensheng MIAO Changqing. Research on design and application of PHC pipe pile in high-rise buildings in soft soil area with high seismic intensity[J]. Building Structure,2022,48(14):124-130,16.

作者:王义春 王治海 左恩胜 缪长青
单位:成都基准方中建筑设计有限公司西安分公司 东南大学土木工程学院
摘要:以昆明市某高层建筑项目的桩筏基础设计为工程背景,采用YJK软件建立桩筏基础计算模型,针对本工程的地质状况,进行了高烈度地区地震组合工况下混凝土PHC管桩内力研究。提出了在建筑物轮廓墙体外附近密集布置桩基并适当加厚筏板与设置抗剪弯起钢筋等提高筏板抗剪承载力的方法,进行了PHC管桩抗压优化设计;提出了水浮力与地震组合工况下PHC管桩拔力的计算方法,采用可靠的连接接头进行了PHC管桩抗拔优化设计;在分析了桩身拉力对桩身受剪承载力的影响的基础上,结合桩顶土体性质换填改良与PHC管桩填芯的有效措施,进行了PHC管桩抗剪合理设计。结果表明该PHC管桩适用于高烈度软土地区。
关键词:高层建筑;PHC管桩;高地震烈度软土地区;水浮力;地震拔力;地震水平力
作者简介:王义春,硕士,工程师,一级注册结构工程师,主要从事民用建筑结构设计与研究,Email:Wangyic87@163.com。
基金:国家自然基金项目(51778135);国家重点研发计划项目(2017YFC0806001)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 张仕,李欢秋,王爱勋.提高PHC管桩在深基坑支护中应用的技术途径[J].地下空间与工程学报,2011,12(S2):1643-1647.
[2] 李光明.高地震烈度软土预应力管桩(PHC)桩基础的抗震特性研究[D].天津:河北工业大学,2013:1.
[3] 建筑桩基技术规范:JGJ 94—2008[S].北京:中国建筑工业出版社,2008.
[4] 预应力混凝土管桩技术标准:JGJ/T 406—2017[S].北京:中国建筑工业出版社,2017.
[5] 先张法预应力混凝土管桩基础技术规程:DBJ 53/T-22—2007 [S].昆明:云南出版集团公司云南科技出版社,2008.
[6] 刘惠珊.桩基震害及原因分析-日本阪神大地震的启示[J].工程抗震,1999(1):37-43.
[7] 刘惠珊.桩基抗震设计探讨-日本阪神大地震的启示[J].工程抗震,2000(3):27-32.
[8] 杨树标,唐伟,贾剑辉.管桩模型振动台试验的应变测试分析研究[J].建筑科学,2012,28(3):34-37.
[9] 刘春原,李光宏,李兵.预应力管桩振动台试验的数值分析[J].岩土力学,2012,33(S1):265-269.
[10] 李曰辰,邢克勇,刘浩,等.考虑土-桩-结构相互作用的PHC管桩抗震性能试验研究[J].岩石力学与工程学报,2013,32(2):401-410.
[11] 戴轩,郑刚,张楠,等.成层软土地区高层建筑PHC管桩抗震性能研究[J].土木工程学报,2019,52(S1):248-256.
[12] 郑刚,张天奇,李庆钢,等.考虑剪跨比及截桩填芯影响的PHC管桩抗剪承载力试验研究[J].土木工程学报,2014,47(7):97-109.
[13] 杨志坚,韩嘉明,雷岳强,等.预应力混凝土管桩与承台连接节点抗震性能研究[J].工程力学,2019,36(S1):248-254.
[14] 预应力混凝土管桩:10G409[S].北京:中国计划出版社,2010.
[15] 建筑抗震设计规范:GB 50011—2010 [S].2016年版.北京:中国建筑工业出版社,2016.
[16] 建筑地基基础规范:GB 50007—2011[S].北京:中国建筑工业出版社,2012.
[17] 混凝土结构设计规范:GB 50010—2010 [S].2015年版.北京:中国建筑工业出版社,2015.
[18] 先张法预应力混凝土抗拔管桩(JH抱箍式连接):Q/321183 JH002—2019[S].江苏:江苏凤凰科学技术出版社,2019.
Research on design and application of PHC pipe pile in high-rise buildings in soft soil area with high seismic intensity
WANG Yichun WANG Zhihai ZUO Ensheng MIAO Changqing
(Xi'an Branch of Chengdu Benchmark Fangzhong Architectural Design Co., Ltd. School of Civil Engineering, Southeast University)
Abstract: Taking the piled raft foundation design of a high-rise building project in Kunming as the engineering background, the piled raft foundation calculation model was established by YJK software. According to the geological condition of this project, the internal force of concrete PHC pipe piles under combined seismic conditions in high seismic intensity areas was studied. A method of densely arranging pile foundations near the outer contour of the building and improving the shear capacity of the raft by appropriately thickening the raft and setting bent-up bar was proposed, and the optimized design of the PHC pipe pile compressing resistance was carried out. A method for calculating the drawing force of PHC pipe piles under the combined working conditions of water buoyancy and earthquake action was proposed, and the optimized design of the PHC pipe piles drawing resistance was carried out by using reliable connection joints. Based on the analysis of the effect of tension on pile shear capacity, the reasonable design of the PHC pipe piles shearing resistance was carried out by combining the soil replacement and improvement at the top of the pile and PHC pipe pile core filling measures. The results show that the PHC pipe pile is suitable for soft soil in high seismic intensity area.
Keywords: high-rise building; PHC pipe piles; soft soil area with high seismic intensity; water buoyancy; drawing force of earthquake; horizontal seismic force
409 0 0
文字:     A-     A+     默认 取消