复杂火电厂主厂房结构减隔震体系抗震性能评估

引用文献:

尹业先 王健泽 周裕洲 戴靠山 查军龙. 复杂火电厂主厂房结构减隔震体系抗震性能评估[J]. 建筑结构,2022,48(14):85-91.

YIN Yexian WANG Jianze ZHOU Yuzhou DAI Kaoshan ZHA Junlong. Seismic performance evaluation for a complex thermal power plant building using isolation and supplemental damping systems[J]. Building Structure,2022,48(14):85-91.

作者:尹业先 王健泽 周裕洲 戴靠山 查军龙
单位:山东电力建设第三工程有限公司 四川大学土木工程系
摘要:电力工业结构是重要的基础设施之一。受生产工艺的影响,火力发电厂主厂房存在结构布置复杂与不规则的特点。为了提高火电厂主厂房结构的抗震性能,减小地震灾害下因发电生产中断造成的直接和间接损失,基于一实际火电厂主厂房结构,发展了减隔震结构体系。主要对重型煤斗设备进行了隔震处理,并配合使用附加防屈曲支撑与金属软钢阻尼器。对该火电厂主厂房的原抗震结构体系与减隔震结构体系进行有限元建模,对用于模拟钢支撑、隔震支座及附加消能装置的单元参数经试验结果进行校正取值。选择15组天然地震动,对两个结构体系的数值模型开展动力时程分析,分别从单个时程工况下结构损伤情况、设防地震强度下结构层间位移角分布均值、结构地震易损性三个方面对比抗震结构体系与减隔震结构体系的抗震性能。结果表明,发展的减隔震结构体系有效保护了主体结构不受损坏,层间位移角响应沿高度分布更为均匀,且三个性能水准下的抗力中位值提高至原抗震结构体系的1.4~2倍。
关键词:火电厂;煤斗隔震;消能减震;抗震性能;易损性
作者简介:尹业先,学士,高级工程师,主要从事电力土建施工技术与管理,Email:yinyexian@sepco3.com。戴靠山,博士,教授,主要从事工程结构抗震研究,Email:kdai@scu.edu.cn。
基金:国家自然科学基金(U1710111&51878426);中国电力建设股份有限公司科研项目(KJ-2016-095)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] International Energy Agency.Electricity-fuels & technologies-IEA[DB /OL].(2020-09-04)[2020-09-07].https://www.iea.org /fuels-and-technologies /electricity.
[2] 戴靠山,李伯维,王健泽,等.大型钢支撑框排架结构火电厂的弹塑性分析[J].土木工程学报,2016,49(S2):114-119.
[3] 曾金盛,白国良,刘林,等.动力弹塑性分析在大型火电厂主厂房结构中的应用[J].建筑结构,2014,44(18):63-67.
[4] 薛建阳,梁炯丰,彭修宁,等.大型火电厂钢结构主厂房静力弹塑性分析[J].建筑结构,2013,43(4):71-73,54.
[5] 常兆中,周锡元,姚德康.设置阻尼器的火电厂框架——支撑结构的减震性能分析[J].建筑科学,2003,19(6):31-33,38.
[6] 孙香红,王社良,苏三庆,等.大型火电厂纵向消能支撑框架结构1/8比例模型拟静力试验研究[J].西安建筑科技大学学报(自然科学版),2006,38(3):384-389.
[7] 康迎杰,彭凌云,刘文.火电厂主厂房分布式梁间阻尼器减震方法研究[J].建筑结构,2019,49(S1):488-493.
[8] DAI K S,LI B W,WANG J Z,et al.Optimal probability-based partial mass isolation of elevated coal scuttle in thermal power plant building[J].The Structural Design of Tall and Special Buildings,2018,27(11):1477.
[9] ASCE.Minimum design loads and associated criteria for buildings and other structures:ASCE/SEI 7-16 [S].Reston,VA:American Society of Civil Engineers,2016.
[10] WANG J Z,DAI K S,YIN Y X,et al.Seismic performance-based design and risk analysis of thermal power plant building with consideration of vertical and mass irregularities[J].Engineering Structures,2018,164:141-154.
[11] CHAN R W K,ALBERMANI F,KITIPORNCHAI S.Experimental study of perforated yielding shear panel device for passive energy dissipation[J].Journal of Constructional Steel Research,2013,91:14-25.
[12] 翁大根,江月,吕西林,等.基于层间有害位移的黏滞阻尼器配置[J].结构工程师,2014,30(1):113-121.
[13] SOUZA R M D.Force-based finite element for large displacement inelastic analysis of frames[D].Berkeley:University of California,Berkeley,2000.
[14] ASCE.Seismic evaluation and retrofit of existing buildings ASCE/SEI 41-13[S].Reston,VA:American Society of Civil Engineers,2014.
[15] Pacific Earthquake Engineering Research Center (PEER).NGA-Next generation attenuation project [DB/OL].[2020-09-07].https://ngawest2.berkeley.edu/.
[16] 于晓辉,吕大刚.基于云图-条带法的概率地震需求分析与地震易损性分析[J].工程力学,2016,33(6):68-76.
[17] ELLINGWOOD B R,CELIK O C,KINALI K.Fragility assessment of building structural systems in Mid-America[J].Earthquake Engineering & Structural Dynamics,2007,36(13):1935-1952.
Seismic performance evaluation for a complex thermal power plant building using isolation and supplemental damping systems
YIN Yexian WANG Jianze ZHOU Yuzhou DAI Kaoshan ZHA Junlong
(SEPCOIII Electric Power Construction Corporation Department of Civil Engineering,Sichuan University)
Abstract: The structure of electric power industry is one of the important infrastructures. Due to the constraints by operational practice, the thermal power plant buildings are featured with complexity and irregularity. With the purpose of improving the seismic performance of the thermal power plant buildings and reducing the direct and indirect seismic loss, the seismic resilient system was developed based on a real thermal power plant building. Isolation technique was used for the heavy coal bunkers housed in the building. Also, buckling-restrained braces and yielding steel panel damper were considered. The numerical models for the seismic resilient system and the conventional seismic system were established. The parameter values for modeling steel braces, isolators, dampers were verified by testing results. A total of 15 pairs of ground motions were selected and response-history analyses were performed. The seismic performances of the seismic resilient system and the conventional seismic system were compared from three aspects: the structural damage under a single time-history condition, the mean value of the story drift profile distribution under the fortified seismic intensity, and the structural seismic fragility.The results show that the adopted passive control techniques protected the structure. The story drift profiles along major axis of the structure are more uniform than the conventional building system. Moreover, the median seismic capacities of the seismic resilient system are up to 1.4~2.0 times the capacities of the conventional system.
Keywords: thermal power plant; coal bunker isolation; supplemental damping system; seismic performance; seismic fragility
383 0 0
文字:     A-     A+     默认 取消