基于浸没式液冷的锂电池热管理研究进展

作者:江毅 李超恩 温小栋 于航 刘东京
单位:宁波工程学院 同济大学 江苏大学
摘要:电池热管理系统对电动汽车的安全性至关重要。随着电池能量密度和放电功率的提高,传统散热方案已无法满足当前电池散热的要求。浸没式液冷电池热管理系统作为电动汽车动力电池组和动力系统的高效热管理解决方案之一,正受到越来越多的关注。本文综述了目前锂离子电池浸没式液冷技术,包括单相浸没式液冷和两相浸没式液冷;探讨了冷却液种类、排布方式、流速、压力等因素对系统性能的影响及浸没式液冷效率的评价方法。同时,分析了目前浸没式液冷技术在电池热管理中的行业趋势。最后,对于浸没式液冷在锂电池热管理中的应用进行了展望,为开发更高功率、更安全和更持久的电动汽车提供参考。
关键词:锂电池热管理液冷浸没式液冷单相浸没式液冷两相浸没式液冷沸腾换热
作者简介:江毅,男,2002年生,在读本科生;*李超恩,315211浙江省宁波市江北区风华路201号,E-mail:lichaoen@hotmail.com;
基金:浙江省基础公益研究项目(编号:LQ22E080011);宁波市科技创新重大项目(编号:2020Z056、2020Z034);宁波市重大科技任务攻关项目(编号:2022Z230);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] MAISEL F,NEEF C,MARSCHEIDER-WEIDEMANN F,et al.A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles[J].Resources,conservation and recycling,2023,192:106920.

[2] HONG J C,WANG Z P,QU C H,et al.Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles[J].Applied energy,2022,321:119229.

[3] OSMANI K,ALKHEDHER M,RAMADAN M,et al.Recent progress in the thermal management of lithium-ion batteries[J].Journal of cleaner production,2023,389:136024.

[4] 刘小杰,张英,刘洋,等.锂离子电池热管理系统综述[J].电池,2022,52(2):208- 212.

[5] JIANG Z Y,LI H B,QU Z G,et al.Recent progress in lithium-ion battery thermal management for a wide range of temperature and abuse conditions[J].International journal of hydrogen energy,2022,47:9428- 9459.

[6] 李龙,李科群,王学章.锂电池散热冷却方式综述[J].农业装备与车辆工程,2022,60(5):80- 84.

[7] BHOSALE A J,DESHMUKH V N.Efficient ways of thermal management of an EV battery[J].Materials today:proceedings,2023,72:1434- 1445.

[8] ZHANG S B,HE X,LONG N C,et al.Improving the air-cooling performance for lithium-ion battery packs by changing the air flow pattern[J].Applied thermal engineering,2023,221:119825.

[9] WERAGODA D M,TIAN G,BURKITBAYEV A,et al.A comprehensive review on heat pipe based battery thermal management systems[J].Applied thermal engineering,2023,224:120070.

[10] NASAJPOUR-ESFAHANI N,GARMESTANI H,ROZATI M,et al.The role of phase change materials in lithium-ion batteries:a brief review on current materials,thermal management systems,numerical methods,and experimental models[J].Journal of energy storage,2023,63:107061.

[11] AKBARZADEH M,KALOGIANNIS T,JIN L,et al.Experimental and numerical thermal analysis of a lithium-ion battery module based on a novel liquid cooling plate embedded with phase change material[J].Journal of energy storage,2022,50:104673.

[12] PAMBUDI N A,SARIFUDIN A,FIRDAUS R A,et al.The immersion cooling technology:current and future development in energy saving[J].Alexandria engineering journal,2022,61:9509- 9527.

[13] ROE C,FENG X N,WHITE G,et al.Immersion cooling for lithium-ion batteries:a review[J].Journal of power sources,2022,525:231094.

[14] DAN D,YAO C N,ZHANG Y J,et al.Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model[J].Applied thermal engineering,2019,162:114183.

[15] DENG Y W,FENG C L,E J Q,et al.Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system:a review[J].Applied thermal engineering,2018,142:10- 29.

[16] OFFER G,PATEL Y,HALES A,et al.Cool metric for lithium-ion batteries could spur progress[J].Nature,2020,582:485- 487.

[17] WU W X,WANG S F,WU W,et al.A critical review of battery thermal performance and liquid based battery thermal management[J].Energy conversion and management,2019,182:262- 281.

[18] ZHANG Y L,ZHAO Y Q,DAI S Y,et al.Cooling technologies for data centres and telecommunication base stations:a comprehensive review[J].Journal of cleaner production,2022,334:130280.

[19] WANG B,WANG F,YANG M H,et al.Investigation on the two-phase loop cooling system composed of maglev compressor and liquid pump for data centers[J].Applied thermal engineering,2023,218:119377.

[20] ZHOU G H,ZHOU J Z,HUAI X L,et al.A two-phase liquid immersion cooling strategy utilizing vapor chamber heat spreader for data center servers[J].Applied thermal engineering,2022,210:118289.

[21] LIU J H,FAN Y N,WANG J H,et al.A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system[J].Renewable energy,2022,201:712- 723.

[22] SATYANARAYANA G,RUBEN SUDHAKAR D,MUTHYA GOUD V,et al.Experimental investigation and comparative analysis of immersion cooling of lithium-ion batteries using mineral and therminol oil[J].Applied thermal engineering,2023,225:120187.

[23] WANG Z P,ZHAO R J,WANG S Z,et al.Heat transfer characteristics and influencing factors of immersion coupled direct cooling for battery thermal management[J].Journal of energy storage,2023,62:106821.

[24] WANG H T,TAO T,XU J,et al.Thermal performance of a liquid-immersed battery thermal management system for lithium-ion pouch batteries[J].Journal of energy storage,2022,46:103835.

[25] LIU J H,FAN Y N,XIE Q M.Feasibility study of a novel oil-immersed battery cooling system:experiments and theoretical analysis[J].Applied thermal engineering,2022,208:118251.

[26] HAN J W,GARUD K S,HWANG S G,et al.Experimental study on dielectric fluid immersion cooling for thermal management of lithium-ion battery[J].Symmetry,2022,14:2126.

[27] LASHBROOK M,AL-AMIN H,MARTIN R.Natural ester and synthetic ester fluids,applications and maintenance[C]//2017 10th Jordanian International Electrical and Electronics Engineering Conference (JIEEEC),2017:1- 6.

[28] MEHTA D M,KUNDU P,CHOWDHURY A,et al.A review of critical evaluation of natural ester vis-a-vis mineral oil insulating liquid for use in transformers:part II[J].IEEE transactions on dielectrics and electrical insulation,2016,23:1705- 1712.

[29] SUN Y,WANG Y P,ZHU L,et al.Direct liquid-immersion cooling of concentrator silicon solar cells in a linear concentrating photovoltaic receiver[J].Energy,2014,65:264- 271.

[30] MATSUOKA M,MATSUDA K,KUBO H.Liquid immersion cooling technology with natural convection in data center[C]//2017 IEEE 6th International Conference on Cloud Networking (CloudNet),2017:1- 7.

[31] CELEN A.Experimental investigation on single-phase immersion cooling of a lithium-ion pouch-type battery under various operating conditions[J].Applied sciences,2023,13:2775.

[32] LUO M Y,CAO J H,LIU N H,et al.Experimental and simulative investigations on a water immersion cooling system for cylindrical battery cells[J].Frontiers in energy research,2022,10:803882.

[33] 严逊,于航,李超恩.浸没式液冷服务器排列方式研究[J].暖通空调,2023,53(1):131- 135,155.

[34] VAN GILS R W,DANILOV D,NOTTEN P H L,et al.Battery thermal management by boiling heat-transfer[J].Energy conversion and management,2014,79:9- 17.

[35] GIAMMICHELE L,D'ALESSANDRO V,FALONE M,et al.Experimental study of a direct immersion liquid cooling of a Li-ion battery for electric vehicles applications[J].International journal of heat and technology,2022,40:1- 8.

[36] HIRANO H,TAJIMA T,HASEGAWA T.Boiling liquid battery cooling for electric vehicle[C]//2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific),2014:1- 4.

[37] WU N,YE X L,YAO J X,et al.Efficient thermal management of the large-format pouch lithium-ion cell via the boiling-cooling system operated with intermittent flow[J].International journal of heat and mass transfer,2021,170:121018.

[38] WANG Y F,WU J T.Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles[J].Energy conversion and management,2020,207:112569.

[39] LI Y,ZHOU Z F,HU L M,et al.Experimental studies of liquid immersion cooling for 18650 lithium-ion battery under different discharging conditions[J].Case studies in thermal engineering,2022,34:102034.

[40] GOODARZI M,JANNESARI H,AMERI M.Experimental study of Li-ion battery thermal management based on the liquid-vapor phase change in direct contact with the cells[J].Journal of energy storage,2023,62:106834.

[41] LI Y,BAI M L,ZHOU Z F,et al.Experimental investigations of liquid immersion cooling for 18650 lithium-ion battery pack under fast charging conditions[J].Applied thermal engineering,2023,227:120287.

[42] LI Y,BAI M L,ZHOU Z F,et al.Experimental studies of reciprocating liquid immersion cooling for 18650 lithium-ion battery under fast charging conditions[J].Journal of energy storage,2023,64:107177.

[43] WANG Y F,LI B,HU Y,et al.Experimental study on immersion phase change cooling of lithium-ion batteries based on R1233ZD(E)/ethanol mixed refrigerant[J].Applied thermal engineering,2023,220:119649.

[44] TRAN N,SAJJAD U,LIN R,et al.Effects of surface inclination and type of surface roughness on the nucleate boiling heat transfer performance of HFE-7200 dielectric fluid[J].International journal of heat and mass transfer,2020,147:119015.

[45] TAN X J,LYU P X,FAN Y Q,et al.Numerical investigation of the direct liquid cooling of a fast-charging lithium-ion battery pack in hydrofluoroether[J].Applied thermal engineering,2021,196:117279.

[46] WANG J,RUAN L.Cell-to-cell inconsistency analysis and structure optimization for a liquid-cooled cylindrical battery module[J].Applied thermal engineering,2023,224:120021.

[47] HE P,LU H,FAN Y W,et al.Numerical investigation on a lithium-ion battery thermal management system utilizing a double-layered I-shaped channel liquid cooling plate exchanger[J].International journal of thermal sciences,2023,187:108200.

[48] JITHIN K V,RAJESH P K.Numerical analysis of single-phase liquid immersion cooling for lithium-ion battery thermal management using different dielectric fluids[J].International journal of heat and mass transfer,2022,188:122608.

[49] AL-ZAREER M,DINCER I,ROSEN M A.A novel approach for performance improvement of liquid to vapor based battery cooling systems[J].Energy conversion and management,2019,187:191- 204.

[50] AL-ZAREER M,DINCER I,ROSEN M A.Comparative assessment of new liquid-to-vapor type battery cooling systems[J].Energy,2019,188:116010.

[51] DUBEY P,PULUGUNDLA G,SROUJI A K.Direct comparison of immersion and cold-plate based cooling for automotive Li-ion battery modules[J].Energies,2021,14:1259.

[52] AMALESH T,LAKSHMI NARASIMHAN N.Liquid cooling vs hybrid cooling for fast charging lithium-ion batteries:a comparative numerical study[J].Applied thermal engineering,2022,208:118226.

[53] HAN J W,GARUD K S,KANG E H,et al.Numerical study on heat transfer characteristics of dielectric fluid immersion cooling with fin structures for lithium-ion batteries[J].Symmetry,2023,15:92.

[54] PATIL M S,SEO J H,LEE M Y.A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management[J].Energy conversion and management,2021,229:113715.

[55] ZHA Y F,HE S Q,MENG X F,et al.Heat dissipation performance research between drop contact and immersion contact of lithium-ion battery cooling[J].Energy,2023,279:128126.

[56] XU J,GUO Z,XU Z M,et al.A systematic review and comparison of liquid-based cooling system for lithium-ion batteries[J].eTransportation,2023,17:100242.

[57] KOSTER D,MARONGIU A,CHAHARDAHCHERIK D,et al.Degradation analysis of 18650 cylindrical cell battery pack with immersion liquid cooling system.Part 1:aging assessment at pack level[J].Journal of energy storage,2023,62:106839.

[58] LI X T,ZHOU Z Y,ZHANG M J,et al.A liquid cooling technology based on fluorocarbons for lithium-ion battery thermal safety[J].Journal of loss prevention in the process industries,2022,78:104818.

[59] ROUAUD C,DUNN J,LEWIS I.Innovative battery thermal management:reducing total battery cost and improving safety and charging time[EB/OL].[2023-03-28].https://mobex.io/webinars/innovative-battery-thermal-management-reducing-total-battery-cost-and-imp roving-safety-and-charging-time.

[60] Totem Automobili.Technical specifications[EB/OL].[2023-03-28].https://www.totemautomobili.com/specs.

[61] Green Car Congress.Energy,technologies,issues and policies for sustainable mobility[EB/OL].[2023-03-28].https://www.greencarcongress.com/2021/03/20210331-amg.html.

[62] EVARTS E C.Automotive supplier tests immersion-cooled batteries for EVs[EB/OL].[2023-03-28].https://www.greencarreports.com/news/1124355_automotive-supplier-tests-immersion-cooled-batteries-for-evs.

[63] LION Smart.Lithium-ion battery technology[EB/OL].[2023-03-28].https://lionsmart.com/en/battery-technology.

[64] CHAN J R,RAO V K.Vehicle battery module with cooling and safety features:JP20170521223[P].2017-11-15.

[65] 吴苏珊.中国能建广东火电承建的全球首个浸没式液冷储能电站项目投产[EB/OL].[2023-03-28].http://www.chinapower.com.cn/guihuajianshe/qiye/2023-03-09/191834.html.
Recent advancements on thermal management of lithium batteries based on immersion liquid cooling
Jiang Yi Li Chaoen Wen Xiaodong Yu Hang Liu Dongjing
(Ningbo University of Technology Tongji University Jiangsu University)
Abstract: Battery thermal management systems play a crucial role in ensuring the safety of electric vehicles. However, with the increase of battery energy density and discharge power, traditional heat dissipation methods are no longer sufficient to meet the current requirements for effective battery cooling. Immersion liquid cooling battery thermal management systems have emerged as an efficient solution for electric vehicle power battery packs and power systems, garnering significant attention in recent years. Therefore, this review focuses on immersion liquid cooling technology for lithium-ion batteries, encompassing both single-phase and two-phase immersion liquid cooling approaches. The impact of coolant type, distribution, flow rate, pressure, and other factors on system performance is discussed alongside evaluation methods for assessing immersion liquid cooling efficiency. Furthermore, an analysis of the current industry trends pertaining to immersion liquid cooling technology in battery thermal management is provided. Finally, future prospects regarding the application of immersion liquid cooling in enhancing the thermal management of lithium batteries are forecasted herein, offering valuable insights towards developing higher-power electric vehicles that are safer and possess longer-lasting capabilities.
Keywords: lithium battery thermal management; liquid cooling; immersion liquid cooling; single-phase immersion liquid cooling; two-phase immersion liquid cooling; boiling heat exchange;
259 0 0
文字:     A-     A+     默认 取消