长距离地下综合管廊局部通风强化换热效果研究

作者:尹海国 王烁焱 邓鑫 康云飞
单位:西安建筑科技大学
摘要:现有的地下综合管廊通风散热方法主要为换气次数法。当管廊长度增加时,要满足规范规定的廊内温度不高于40℃的要求需要非常大的换气量,并会导致管廊前端区域过冷,整体散热效果并不好。本文提出了一种可用于长距离地下综合管廊的局部通风方式,使用CFD方法建立了局部通风数值模型,通过缩尺模型实验验证了其准确性。对增设射流风机后形成的局部通风气流组织进行了研究,结果表明,在总送风量相同的情况下,设置射流风机能够改善管廊局部热环境,在本文所研究工况下,局部截面平均温度降低了0.5℃。对比研究发现:管廊进口风量和射流风机风量之比对管廊内热环境影响不大;风机射流角度对管廊内热环境的优化具有显著影响,射流角度为90°时管廊后端截面平均温度相比0°、45°分别降低了0.41、0.33℃,90°为最优射流角度。
关键词:管廊气流组织局部控制通风散热数值模拟
作者简介:尹海国,男,1987年生,博士研究生,教授,710055陕西省西安市碑林区雁塔路13号西安建筑科技大学,E-mail:yinhaiguo@xauat.edu.cn;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 贾志恒,陈战利,李雯琳.城市地下综合管廊的现状及发展探索[J].江西建材,2016(22):6- 7.

[2] 程洁群.综合管廊消防设计探讨[J].武警学院学报,2014,30(8):54- 56.

[3] 上海市政工程设计研究总院(集团)有限公司,同济大学.城市综合管廊工程技术规范:GB 50838—2015[S].北京:中国计划出版社,2015:20.

[4] 李佳兴,曾思景,方子梁,等.地下管廊综合舱热压自然通风效果分析[J].暖通空调,2022,52(3):120- 125.

[5] MI H,LIU Y,JIAO Z,et al.A numerical study on the optimization of ventilation mode during emergency of cable fire in utility tunnel[J].Tunnelling and underground space technology,2020,100:103403.

[6] 邱洁.综合管廊运维成本研究[J].建设科技,2021(22):38- 40.

[7] 杨冬梅,孟庆宇.地下综合管廊通风系统设计探讨[J].暖通空调,2022,52(4):104- 107.

[8] 朱金鹏.城市综合管廊长距离通风与消防特性研究[D].北京:北京交通大学,2020:16- 19.

[9] 韦岩,谢安生,洪梦华.综合管廊电缆舱断面形状对通风影响的研究[J].施工技术,2018,47(增刊4):1436- 1439.

[10] WANG J,LIU X,CHEN S,et al.Reduced-scale model study on cable heat dissipation and airflow distribution of power cabins[J].Applied thermal engineering,2019,160:114068.

[11] MENG N,HU X,TIAN M.Effect of blockage on critical ventilation velocity in longitudinally ventilated tunnel fires[J].Tunnelling and underground space technology,2020,106:103580.

[12] 陈芬.城市特长隧道通风关键技术研究:以东湖通道工程为例[D].武汉:武汉工程大学,2018:19- 21.

[13] CHEN T,LI Y,XU Z,et al.Study of the optimal pitch angle of jet fans in road tunnels based on turbulent jet theory and numerical simulation[J].Building and environment,2019,165:106390.

[14] 林俊,丛北华,韩新,等.基于CFD模拟分析的城市综合管廊火灾特性研究[J].灾害学,2010,25(增刊1):374.

[15] 叶爽,张红永,王文新,等.模拟不同通风方式下综合管廊热力舱热力管道最佳通风区[J].科学技术与工程,2020,20(16):6606- 6612.

[16] WANG X,ZHANG T,TAN Y,et al.Piston-wind ventilation strategy for thermal environment improvement of heat-supply compartment in utility tunnels[J].Case studies in thermal engineering,2022,30:101790.

[17] LI S,LIU X,WANG J,et al.Experimental reduced-scale study on the resistance characteristics of the ventilation system of a utility tunnel under different pipeline layouts[J].Tunnelling and underground space technology,2019,90:131- 143.

[18] 陈伟,丁燕,姚戈,等.地下长距离管廊跨防火分区通风换热数值模拟研究[J].暖通空调,2023,53 (9):92- 99,132.

[19] 李善化.火力发电厂及变电所供暖通风空调设计手册[M].北京:中国电力出版社,2000:170- 173.
Heat transfer enhancement effect of local ventilation in long-distance utility tunnels
Yin Haiguo Wang Shuoyan Deng Xin Kang Yunfei
(Xi'an University of Architecture and Technology)
Abstract: The ventilation and heat dissipation method of the existing utility tunnels is mainly the air exchange rate method. When the length of the utility tunnel increases, a very large amount of ventilation is required to meet the requirement that the temperature is not higher than 40 ℃ in the specification, the front end of the utility tunnel will be too cold, and the overall heat dissipation effect is not good. In this paper, a local ventilation method that can be used for long-distance utility tunnels is proposed, a numerical model of the local ventilation is established by CFD method, and its accuracy is verified by the scaled model experiment. The air distribution of local ventilation formed after the addition of jet fans is studied. The results show that the local thermal environment of the utility tunnel can be improved by setting the jet fan under the condition that the total air supply volume is the same, and the average temperature of the local section can be reduced by 0.5 ℃ under the working conditions studied in this paper. The comparative results show that the ratio between the inlet air volume of the utility tunnel and the air volume of the jet fan has little impact on the thermal environment in the utility tunnel. The jet angle of the jet fan has a significant impact on the optimization of the thermal environment in the utility tunnel, when the jet angle is 90°, the average temperature of the rear end section of the tunnel is reduced 0.41 ℃ and 0.33 ℃ compared with 0° and 45°, respectively, and 90° is the optimal jet angle.
Keywords: utility tunnel; air distribution; local control; ventilation and heat dissipation; numerical simulation;
246 0 0
文字:     A-     A+     默认 取消