换热器溶液除霜技术的研究进展

作者:钟天明 何志林 丁力行 白浩贤 罗玉和 杨俊荣
单位:仲恺农业工程学院
摘要:综述了溶液再生方法、技术的研究现状和最新突破,并评估了溶液除霜技术的发展方向。通过已有研究总结了影响溶液喷淋和溶液再生的因素,结果表明,溶液喷淋的单位迎风面积最佳抑霜风速为0.13~0.16 m/s。总结分析了溶液浓度对除霜效率的影响,得出当溶液质量分数为31%~65%时,溶液除霜可满足除霜要求,并在溶液质量分数为50%时,溶液除霜的效率最高。最后分析了溶液除霜的优点和不足,指出溶液除霜可作为常态化辅助减霜和抑霜手段,构建绿色除霜环境,或基于溶液除霜构建近零结霜空气源热泵系统。
关键词:空气源热泵结霜无霜化溶液除霜溶液再生除霜效率
作者简介:钟天明,男,1988年生,博士研究生,副教授,硕士生导师510225广州市海珠区东沙街24号仲恺农业工程学院机电工程学院,E-mail:125482766@qq.com;
基金:广东省自然科学基金面上项目(编号:2114050002858);广东省高等学校教学改革项目(编号:KA210311515);江西省重点研发计划项目(编号:20192BBH80014);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 李延贺,臧润清.空气源热泵除霜方法的研究与发展[J].低温与超导,2018,46(9):82- 86.

[2] 张鑫,张华,王子龙,等.空气源热泵系统无霜化方法概述[J].热能动力工程,2021,36(2):1- 8.

[3] 李玲,王景刚,鲍玲玲,等.空气源热泵除霜研究新进展[J].节能,2017,36(1):72- 75.

[4] SONG M J,DENG S M,DANG C B,et al.Review on improvement for air source heat pump units during frosting and defrosting[J].Applied energy,2018,211:1150- 1170.

[5] 孙家正.空气源热泵除霜方法的研究现状及展望[J].建筑热能通风空调,2017,36(8):42- 46.

[6] 曲明璐,余倩,李封澍,等.空气源热泵除霜问题的研究现状及进展[J].建筑节能,2016,44(8):1- 5.

[7] 张毅,张冠敏,张莉莉,等.空气源热泵结霜机理及除霜/抑霜技术研究进展[J].制冷学报,2018,39(5):13- 24.

[8] 周会芳,臧润清.除霜方法的研究及其进展[J].低温与超导,2019,47(12):78- 84.

[9] 冯瑞峰,孙俊彪,霍兵,等.空气源热泵除霜技术进展与区域化应用综述[J].科学技术与工程,2020,20(33):6- 16.

[10] SONG M J,DONG J K,WU C L,et al.Improving the frosting and defrosting performance of air source heat pump units:review and outlook[J].Transactions Hong Kong institution of engineers,2017,24(2):88- 98.

[11] 孙敏生,诸群飞,万水娥,等.冷却塔供冷关键技术问题分析[J].暖通空调,2008,38(增刊):81- 85.

[12] 傅献彩.物理化学:上册[M].北京:高等教育出版社,2005:214- 216.

[13] 孙家正,余延顺.空气源热泵溶液除霜及冷冻再生系统[J].暖通空调,2018,48(2):102- 106.

[14] 王沣浩,马龙霞,王志华,等.空气源热泵除霜控制方法研究现状及展望[J].制冷学报,2021,42(5):27- 35.

[15] 储碧峰,周恩泽,郭健翔,等.空气源热泵溶液喷淋除霜系统及初步实验研究[J].低温与超导,2019,47(5):49- 54.

[16] 邹同华,张涛,马淑媛,等.溶液除湿系统除湿性能实验研究[J].暖通空调,2013,43(1):76- 79.

[17] 邱君君,张小松,李玮豪.无霜空气源热泵系统冬季除湿性能初步实验[J].化工学报,2019,70(4):1605- 1613.

[18] 李玮豪,邱君君,张小松.无霜空气源热泵系统冬季运行性能实验[J].化工学报,2018,69(12):5220- 5228.

[19] 张宇航,邱君君,张小松,等.无霜空气源热泵系统除湿与再生工况分析[J].制冷学报,2020,41(4):16- 24.

[20] 许东晟,闫凌,姜益强,等.无霜空气源热泵系统喷淋溶液质量及浓度变化规律研究[J].发电与空调,2014(4):24- 30.

[21] 付慧影,姜益强,姚杨,等.喷淋溶液对无霜空气源热泵系统特性的影响[J].化工学报,2012,63(增刊2):193- 198.

[22] JIANG Y Q,FU H Y,YAO Y,et al.Experimental study on concentration change of spray solution used for a novel non-frosting air source heat pump system[J].Energy and buildings,2014,68:707- 712.

[23] 曹先齐,文先太,吴霜.热源塔盐溶液冷冻再生试验研究[J].制冷与空调,2019,19(12):1- 5.

[24] 余延顺,孙家正,杨剑.空气源热泵溶液除霜及冷冻再生技术研究[J].暖通空调,2018,48(12):74- 78.

[25] 杨剑,余延顺.除霜溶液冷冻再生的可行性分析[J].制冷与空调,2019,19(12):87- 92.

[26] 张建军,李帅旗,陈永珍,等.蒸汽再压缩技术研究现状与发展趋势[J].新能源进展,2020(3):1- 5.

[27] 张勤灵,刘晓华,张涛.机械蒸气再压缩系统再生高浓度溶液的性能研究[J].制冷学报,2021,42(3):1- 9.

[28] 贺宇,余延顺,刘青青.除霜溶液MVR再生技术的可行性研究[J].建筑热能通风空调,2021,40(5):10- 14.

[29] AI S H,WANG B L,LI X T,et al.Numerical analysis on the performance of mechanical vapor recompression system for strong sodium chloride solution enrichment[J].Applied thermal engineering,2018,137:386- 394.

[30] 邱君君,张小松,李玮豪.无霜空气源热泵系统冬季再生性能初步实验[J].制冷学报,2019,40(5):26- 31.

[31] WANG L,CUI H J,FU C.Performance investigation of a novel heating tower heat pump system with integrated air gap membrane distillation regenerator[J].Energy conversion and management,2021,232:113- 121.

[32] SU W,LI W H,ZHOU J M,et al.Experimental investigation on a novel frost-free air source heat pump system combined with liquid desiccant dehumidification and closed-circuit regeneration[J].Energy conversion and management,2018,178:13- 25.

[33] GIAMPIERI A,MA Z,SMALLBONE A,et al.Thermodynamics and economics of liquid desiccants for heating,ventilation and air-conditioning:an overview[J].Applied energy,2018,220:455- 479.

[34] LONGO G A,LAURA F.Experimental measurement of equilibrium vapour pressure of H2O/KCOOH (potassium formate) solution at high concentration[J].International journal of refrigeration,2018,93:1- 7.

[35] 张凡,吴薇,王琴,等.一种复合型无霜空气源热泵系统性能分析[J].暖通空调,2015,45(12):88- 93.

[36] WANG F H,WANG Z H,ZHENG Y X,et al.Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification[J].Applied energy,2015,139:212- 219.

[37] SU W,ZHANG X S.Performance analysis of a novel frost-free air-source heat pump with integrated membrane-based liquid desiccant dehumidification and humidification[J].Energy and buildings,2017,145:293- 303.

[38] SU W,LI H,SUN B,et al.Performance investigation on a frost-free air source heat pump system employing liquid desiccant dehumidification and compressor-assisted regeneration based on exergy and exergoeconomic analysis[J].Energy conversion and management,2019,183:167- 181.
Research progress of solution defrosting technologies for heat exchangers
Zhong Tianming He Zhilin Ding Lixing Bai Haoxian Luo Yuhe Yang Junrong
(Zhongkai College of Agricultural Engineering)
Abstract: This paper reviews the research status and latest breakthroughs of solution regeneration methods and technologies, and evaluates the development direction of solution defrosting technologies. The factors affecting solution spraying and regeneration are summarized through previous studies. The results show that the optimal frost suppression wind speed per unit windward area of solution spraying is 0.13 to 0.16 m/s. The influence of solution concentration on defrosting efficiency is summarized and analysed. It is concluded that when the solution mass fraction is 31% to 65%, the solution defrosting can meet the defrosting requirements, and when the solution mass fraction is 50%, the efficiency of the solution defrosting is the highest. Finally, the advantages and disadvantages of solution defrosting are analysed, and it is pointed out that solution defrosting can be used as a normalized auxiliary defrosting and frost suppression means to build a green defrosting environment, or a near zero frosting air-source heat pump system based on solution defrosting technology.
Keywords: air-source heat pump; frosting; frost-free; solution defrosting; solution regeneration; defrosting efficiency;
606 0 0
文字:     A-     A+     默认 取消