基于营造及评价非均匀热环境目标的人体对流换热系数研究
摘要:为了精确评价非均匀热环境下人体热舒适性以营造低碳健康建筑环境,需要了解各方向气流下人体局部对流换热系数。本文基于实测实验及CFD模拟,对水平及竖直方向气流对人体局部对流换热系数的影响进行了研究,得到了人体各部位对流换热系数的计算模型,分析了各方向气流对人体对流换热系数的影响机制。结果显示:水平气流工况下的人体整体对流换热系数大于竖直气流工况;位于肢体末端的手部、小臂、脚部的对流换热系数较大;处于人体中心部位的腰腹部和背部的对流换热系数较小,且受不同方向气流影响较小。
关键词:对流换热系数人体非均匀热环境热舒适气流方向暖体假人CFD模拟
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] 王月梅.胸部送风工位空调的局部送风参数范围研究[J].建筑科学,2015,31(2):29- 33.
[2] 冯浩栋,韩旭,罗华山.个性化送风系统评价综述[J].建筑热能通风空调,2017,36(8):47- 51.
[3] DE DEAR R J,ARENS E,ZHANG H,et al.Convective and radiative heat transfer coefficients for individual human body segments[J].International journal of biometeorology,1997,40:141- 156.
[4] YU Y C,LIU J L,CHAUHAN K,et al.Experimental study on convective heat transfer coefficients for the human body exposed to turbulent wind conditions[J].Building and environment,2020,169:106533.
[5] 侯昱晟,冯硕,刘苏.基于冬季高层办公建筑空调末端的人员热舒适性数值模拟分析[J].暖通空调,2021,51(增刊1):101- 104.
[6] 李晨玉,王健,王颖,等.改善舞台空间热舒适的模拟分析研究[J].暖通空调,2021,51(1):46- 49.
[7] 刘九五,连之伟,王月梅.CFD在暖通空调系统中的应用现状与发展[J].建筑热能通风空调,2010,29(6):1- 6.
[8] OH W,KATO S.The effect of airspeed and wind direction on human's thermal conditions and air distribution around the body[J].Building and environment,2018,141:103- 116.
[9] XU J X,PSIKUTA A,LI J,et al.A numerical investigation of the influence of wind on convective heat transfer from the human body in a ventilated room[J].Building and environment,2021,188:107427.
[10] GAO S,OOKA R,OH W.Formulation of human body heat transfer coefficient under various ambient temperature,air speed and direction based on experiments and CFD[J].Building and environment,2019,160:106168.
[11] 王丽慧,刘畅,张建舜,等.人体典型裸露部位与环境对流换热和辐射换热的分离实验研究[J].暖通空调,2018,48(6):97- 102.
[12] 马赜纬.一种新型送风方式的送风参数对舒适性的影响[J].建筑热能通风空调,2018,37(5):23- 26.
[13] 董昆,曹旭明,胡伟,等.地板送风房间内流场、温度场及负荷特性的研究[J].建筑科学,2011,27(12):87- 90,113.
[14] 村上周三.CFD与建筑环境设计[M].朱清宇,译.北京:中国建筑工业出版社,2007:117- 118.
[15] MURAKAMI S,KATO S,ZENG J.Combined simulation of airflow,radiation and moisture transport for heat release from a human body[J].Building and environment,2000,35(6):489- 500.
[16] ZHANG W R,HIYAMA K,KATO S,et al.Building energy simulation considering spatial temperature distribution for nonuniform indoor environment[J].Building and environment,2013,63:89- 96.
[17] VERSTEEG H,MALALASEKRA W.An introduction to computational fluid dynamics:the finite volume method[M].London:Pearson Education,2007:76- 77.
[18] ONO T,MURAKAMI S,OOKA R,et al.Numerical and experimental study on convective heat transfer of the human body in the outdoor environment[J].Journal of wind engineering and industrial aerodynamics,2008,96(10):1719- 1732.
[19] YANG J H,KATO S,SEO J.Evaluation of the convective heat transfer coefficient of the human body using the wind tunnel and thermal manikin[J].Journal of Asian architecture and building engineering,2009,8(2):563- 569.
[20] ASHRAE.2017 ASHRAE handbook:fundamentals[M].Atlanta:ASHRAE Inc.,2017:9.7- 9.8.
[2] 冯浩栋,韩旭,罗华山.个性化送风系统评价综述[J].建筑热能通风空调,2017,36(8):47- 51.
[3] DE DEAR R J,ARENS E,ZHANG H,et al.Convective and radiative heat transfer coefficients for individual human body segments[J].International journal of biometeorology,1997,40:141- 156.
[4] YU Y C,LIU J L,CHAUHAN K,et al.Experimental study on convective heat transfer coefficients for the human body exposed to turbulent wind conditions[J].Building and environment,2020,169:106533.
[5] 侯昱晟,冯硕,刘苏.基于冬季高层办公建筑空调末端的人员热舒适性数值模拟分析[J].暖通空调,2021,51(增刊1):101- 104.
[6] 李晨玉,王健,王颖,等.改善舞台空间热舒适的模拟分析研究[J].暖通空调,2021,51(1):46- 49.
[7] 刘九五,连之伟,王月梅.CFD在暖通空调系统中的应用现状与发展[J].建筑热能通风空调,2010,29(6):1- 6.
[8] OH W,KATO S.The effect of airspeed and wind direction on human's thermal conditions and air distribution around the body[J].Building and environment,2018,141:103- 116.
[9] XU J X,PSIKUTA A,LI J,et al.A numerical investigation of the influence of wind on convective heat transfer from the human body in a ventilated room[J].Building and environment,2021,188:107427.
[10] GAO S,OOKA R,OH W.Formulation of human body heat transfer coefficient under various ambient temperature,air speed and direction based on experiments and CFD[J].Building and environment,2019,160:106168.
[11] 王丽慧,刘畅,张建舜,等.人体典型裸露部位与环境对流换热和辐射换热的分离实验研究[J].暖通空调,2018,48(6):97- 102.
[12] 马赜纬.一种新型送风方式的送风参数对舒适性的影响[J].建筑热能通风空调,2018,37(5):23- 26.
[13] 董昆,曹旭明,胡伟,等.地板送风房间内流场、温度场及负荷特性的研究[J].建筑科学,2011,27(12):87- 90,113.
[14] 村上周三.CFD与建筑环境设计[M].朱清宇,译.北京:中国建筑工业出版社,2007:117- 118.
[15] MURAKAMI S,KATO S,ZENG J.Combined simulation of airflow,radiation and moisture transport for heat release from a human body[J].Building and environment,2000,35(6):489- 500.
[16] ZHANG W R,HIYAMA K,KATO S,et al.Building energy simulation considering spatial temperature distribution for nonuniform indoor environment[J].Building and environment,2013,63:89- 96.
[17] VERSTEEG H,MALALASEKRA W.An introduction to computational fluid dynamics:the finite volume method[M].London:Pearson Education,2007:76- 77.
[18] ONO T,MURAKAMI S,OOKA R,et al.Numerical and experimental study on convective heat transfer of the human body in the outdoor environment[J].Journal of wind engineering and industrial aerodynamics,2008,96(10):1719- 1732.
[19] YANG J H,KATO S,SEO J.Evaluation of the convective heat transfer coefficient of the human body using the wind tunnel and thermal manikin[J].Journal of Asian architecture and building engineering,2009,8(2):563- 569.
[20] ASHRAE.2017 ASHRAE handbook:fundamentals[M].Atlanta:ASHRAE Inc.,2017:9.7- 9.8.
Study on convective heat transfer coefficients for human body to create and evaluate non-uniform thermal environment
Abstract: To accurately evaluate the thermal comfort of the human body in a non-uniform thermal environment to create a low-carbon and healthy building environment, local convective heat transfer coefficients for the human body in various airflow directions are necessary. In this paper, based on the measured experiments and CFD simulation, the influences of horizontal and vertical airflow on the local convective heat transfer coefficients for the human body are studied, the calculation models of the convective heat transfer coefficients of different parts of the human body are derived, and the influence mechanism of airflow in each direction on the convective heat transfer coefficients for the human body is analysed. The results show that the overall convective heat transfer coefficient for the human body under the horizontal airflow condition is larger than that under the vertical airflow condition. The convective heat transfer coefficients for limbs(i.e., hands, arms, and feet) are larger. The convective heat transfer coefficients for the waist, abdomen and back in the central part of the human body are smaller and less affected by the airflow in different directions.
Keywords: convective heat transfer coefficient; human body; non-uniform thermal environment; thermal comfort; airflow direction; thermal manikin; CFD simulation;
864
0
0