R32在绝热毛细管中流动模型的验证
摘要:本文建立了R32在绝热毛细管中流动的一维均相模型,并用实验数据验证了该模型的准确性。对比了采用现有文献中5种摩擦因子关联式和4种黏度关联式不同组合时的预测性能。结果表明:f=F(Re)模型与f=F(ε/D,Re)模型在低雷诺数区域预测值相似;随着雷诺数的增加,表面粗糙度的影响使f=F(ε/D,Re)模型预测值明显大于f=F(Re)模型,同时f=F(ε/D,Re)模型对质量流量的预测精度也要优于f=F(Re)模型。在f=F(Re)模型中,Bittle and Pate-Dukler模型具有最小平均绝对偏差(6.99%),有76.92%的数据点相对偏差在±10%以内、94.87%的数据点相对偏差在±20%以内。在f=F(ε/D,Re)模型中,Moody-Dukler模型具有最小平均绝对偏差6.38%,有82.05%的数据点相对偏差在±10%以内、97.44%的数据点相对偏差在±20%以内。
关键词:R32绝热毛细管黏度摩擦因子流动模型
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] MCLINDEN M O,BROWN J S,BRIGNOLI R,等.低GWP值制冷剂的有限选择[J].张磊华,译.暖通空调,2017,47(8):41- 50.
[2] 汪训昌.关于《蒙特利尔议定书》减少氢氟烃(HFCs)修正案的解读、述评与倡议[J].暖通空调,2017,47(5):72- 76.
[3] FAN C C,YAN G,YU J L.Theoretical study on a modified heat pump cycle with zeotropic mixture R32/R290 for district heating in cold region[J].Applied thermal engineering,2019,156:702- 707.
[4] GUO H,GONG M Q,QIN X Y.Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump[J].Applied energy,2019,237:338- 352.
[5] WANG B L,CHENG Z,SHI W X,et al.Optimal volume ratio of two-stage vapour compression system using zeotropic refrigerant[J].International journal of refrigeration,2019,98:343- 353.
[6] LÜ X L,YAN G,YU J L.Solar-assisted auto-cascade heat pump cycle with zeotropic mixture R32/R290 for small water heaters[J].Renewable energy,2015,76:167- 172.
[7] LONGO G A,RIGHETTI G,ZILIO C.Heat-transfer assessment of the low GWP substitutes for traditional HFC refrigerants[J].International journal of heat and mass transfer,2019,139:31- 38.
[8] YANG J,JIA X Y,WU J T.Vapor phase pvTx measurements of binary mixtures of difluoromethane (R32) and 2,3,3,3-tetrafluoroprop-1-ene (R1234yf)[J].The journal of chemical thermodynamics,2019,134:41- 51.
[9] YAO Y C,ZHANG Z B,HU X H,et al.Performance comparison of R32 and R410A in direct evaporative all fresh air-handling units under variable temperature conditions[J].Science and technology for the built environment,2018,24(9):962- 973.
[10] YILMAZ T,ERDINÇ M T.Energetic and exergetic investigation of a novel refrigeration system utilizing ejector integrated subcooling using different refrigerants[J].Energy,2019,168:712- 727.
[11] 周小光,刘妮.低成本高性能的空调系统设计[J].暖通空调,2015,45(11):96- 100.
[12] WONG T N,OOI K T.Refrigerant flow in capillary tube:an assessment of the two phase viscosity correlations on model prediction[J].International communications in heat and mass transfer,1995,22(4):595- 604.
[13] BANSAL P K,RUPASINGHE A S.An homogenous model for adiabatic capillarytubes[J].Applied thermal engineering,1997,18(3/4):207- 219.
[14] FURLONG T W,SCHMIDT D P.A comparison of homogenous and separated flow assumptions for adiabatic capillary flow[J].Applied thermal engineering,2012,48:186- 193.
[15] SHOKOUHMAND H,ZAREH M.Experimental investigation and numerical simulation of choked refrigerant flow through helical adiabatic capillary tube[J].Applied thermal engineering,2014,63(1):119- 128.
[16] YANG L,ZHANG C L.Modified neural network correlation of refrigerant mass flow rates through adiabatic capillary and short tubes:extension to CO2 transcritical flow[J].International journal of refrigeration,2009,32(6):1293- 1301.
[17] SHAO L L,WANG J C,JIN X C,et al.Assessment of existing dimensionless correlations of refrigerant flow through adiabatic capillary tubes[J].International journal of refrigeration,2013,36(1):270- 278.
[18] VINS V,VACEK V.Mass flow rate correlation for twophase flow of R218 through a capillary tube[J].Applied thermal engineering,2009,29(14/15):2816- 2823.
[19] JUNG D,PARK C,PARK B.Capillary tube selection for HCFC22 alternatives[J].International journal of refrigeration,1999,22(8):604- 614.
[20] DEODHAR S D,KOTHADIA H B,IYER K N,et al.Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes[J].Applied thermal engineering,2015,90:879- 894.
[21] ELGENDY E,SCHMIDT J.Rating charts of R-22 alternatives flow through adiabatic capillary tubes[J].World academy of science,engineering and technology,international journal of mechanical,aerospace,industrial,mechatronic and manufacturing engineering,2013,7(8):1632- 1639.
[22] 李少争,余晓明,孔明,等.热泵中毛细管管内流动特性的仿真分析[J].建筑节能,2015,43(12):28- 31.
[23] 王远鹏,徐荣吉,林明峰.工质为R134a绝热型毛细管数值模拟[J].制冷与空调(四川),2008(1):84- 87.
[24] COLLIER J G,THOME J R.Convective boiling and condensation[M].New York:Oxford University Press,1994:433- 434.
[25] ZHOU G B,ZHANG Y F.Numerical and experimental investigations on the performance of coiled adiabatic capillary tubes[J].Applied thermal engineering,2006,26(11/12):1106- 1114.
[26] CHURCHILL S W.Frictional equation spans all fluid flow regimes[J].Chemical engineering journal,1977,84:91- 92.
[27] MOODY L F.Friction factors for pipe flow[J].Journal of fluids engineering,1944,66(8):671- 684.
[28] BITTLE R,PATE M.A theoretical model for predicting adiabatic capillary tube performance with alternative refrigerants[J].Engineering,1996,102:52- 64.
[29] STOECKER W F,JONES W N.Refrigeration and air conditioning[M].New York:The McGaw-Hill,1982:88- 102.
[30] 陈卓如,金朝铭,王洪杰,等.工程流体力学[M].北京:高等教育出版社,2004:242.
[31] CICCHITTI A,LOMBARDI C,SILVESTRI M,et al.Two-phase cooling experiments:pressure drop,heat transfer and burnout measurements[M].Milan:Centro Informazioni Studi Esperienze,1960:407- 425.
[32] MCADAMS W H,WOODS W K,HEROMAN L C.Vaporization inside horizontal tubes:Ⅱ benzene-oil mixtures[J].Journal of fluids engineering,1942,64(3):193- 199.
[33] DUKLER A E,WICKS M,CLEVELAND R G.Frictional pressure drop in two-phase flow:A.a comparison of existing correlations for pressure loss and holdup[J].AIChE journal,1964,10(1):38- 43.
[34] DUKLER A E,WICKS M,CLEVELAND R G.Frictional pressure drop in two-phase flow:B.an approach through similarity analysis[J].AIChE journal,1964,10(1):44- 51.
[35] AKERS W W,DEANS H A,CROSSER O K.Condensing heat transfer within horizontal tubes[J].Chemical engineering progress,1959,55:89- 90.
[36] 丁国良,欧阳华,李鸿光.制冷空调装置数字化设计[M].北京:中国建筑工业出版社,2008:62- 63.
[37] MEFTAH K,OWEIS A.A practical method of selecting capillary tubes for HCFC22 alternatives[EB/OL].[2021-10-01].https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1779&context=iracc.
[38] YILMAZ T,UNAL S.General equation for predicting adiabatic capillary tube performance with alternative refrigerants[G]//ASHRAE.ASHRAE transactions 1996:part(2).Atlanta:ASHRAE Inc.,1996:52- 64.
[2] 汪训昌.关于《蒙特利尔议定书》减少氢氟烃(HFCs)修正案的解读、述评与倡议[J].暖通空调,2017,47(5):72- 76.
[3] FAN C C,YAN G,YU J L.Theoretical study on a modified heat pump cycle with zeotropic mixture R32/R290 for district heating in cold region[J].Applied thermal engineering,2019,156:702- 707.
[4] GUO H,GONG M Q,QIN X Y.Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump[J].Applied energy,2019,237:338- 352.
[5] WANG B L,CHENG Z,SHI W X,et al.Optimal volume ratio of two-stage vapour compression system using zeotropic refrigerant[J].International journal of refrigeration,2019,98:343- 353.
[6] LÜ X L,YAN G,YU J L.Solar-assisted auto-cascade heat pump cycle with zeotropic mixture R32/R290 for small water heaters[J].Renewable energy,2015,76:167- 172.
[7] LONGO G A,RIGHETTI G,ZILIO C.Heat-transfer assessment of the low GWP substitutes for traditional HFC refrigerants[J].International journal of heat and mass transfer,2019,139:31- 38.
[8] YANG J,JIA X Y,WU J T.Vapor phase pvTx measurements of binary mixtures of difluoromethane (R32) and 2,3,3,3-tetrafluoroprop-1-ene (R1234yf)[J].The journal of chemical thermodynamics,2019,134:41- 51.
[9] YAO Y C,ZHANG Z B,HU X H,et al.Performance comparison of R32 and R410A in direct evaporative all fresh air-handling units under variable temperature conditions[J].Science and technology for the built environment,2018,24(9):962- 973.
[10] YILMAZ T,ERDINÇ M T.Energetic and exergetic investigation of a novel refrigeration system utilizing ejector integrated subcooling using different refrigerants[J].Energy,2019,168:712- 727.
[11] 周小光,刘妮.低成本高性能的空调系统设计[J].暖通空调,2015,45(11):96- 100.
[12] WONG T N,OOI K T.Refrigerant flow in capillary tube:an assessment of the two phase viscosity correlations on model prediction[J].International communications in heat and mass transfer,1995,22(4):595- 604.
[13] BANSAL P K,RUPASINGHE A S.An homogenous model for adiabatic capillarytubes[J].Applied thermal engineering,1997,18(3/4):207- 219.
[14] FURLONG T W,SCHMIDT D P.A comparison of homogenous and separated flow assumptions for adiabatic capillary flow[J].Applied thermal engineering,2012,48:186- 193.
[15] SHOKOUHMAND H,ZAREH M.Experimental investigation and numerical simulation of choked refrigerant flow through helical adiabatic capillary tube[J].Applied thermal engineering,2014,63(1):119- 128.
[16] YANG L,ZHANG C L.Modified neural network correlation of refrigerant mass flow rates through adiabatic capillary and short tubes:extension to CO2 transcritical flow[J].International journal of refrigeration,2009,32(6):1293- 1301.
[17] SHAO L L,WANG J C,JIN X C,et al.Assessment of existing dimensionless correlations of refrigerant flow through adiabatic capillary tubes[J].International journal of refrigeration,2013,36(1):270- 278.
[18] VINS V,VACEK V.Mass flow rate correlation for twophase flow of R218 through a capillary tube[J].Applied thermal engineering,2009,29(14/15):2816- 2823.
[19] JUNG D,PARK C,PARK B.Capillary tube selection for HCFC22 alternatives[J].International journal of refrigeration,1999,22(8):604- 614.
[20] DEODHAR S D,KOTHADIA H B,IYER K N,et al.Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes[J].Applied thermal engineering,2015,90:879- 894.
[21] ELGENDY E,SCHMIDT J.Rating charts of R-22 alternatives flow through adiabatic capillary tubes[J].World academy of science,engineering and technology,international journal of mechanical,aerospace,industrial,mechatronic and manufacturing engineering,2013,7(8):1632- 1639.
[22] 李少争,余晓明,孔明,等.热泵中毛细管管内流动特性的仿真分析[J].建筑节能,2015,43(12):28- 31.
[23] 王远鹏,徐荣吉,林明峰.工质为R134a绝热型毛细管数值模拟[J].制冷与空调(四川),2008(1):84- 87.
[24] COLLIER J G,THOME J R.Convective boiling and condensation[M].New York:Oxford University Press,1994:433- 434.
[25] ZHOU G B,ZHANG Y F.Numerical and experimental investigations on the performance of coiled adiabatic capillary tubes[J].Applied thermal engineering,2006,26(11/12):1106- 1114.
[26] CHURCHILL S W.Frictional equation spans all fluid flow regimes[J].Chemical engineering journal,1977,84:91- 92.
[27] MOODY L F.Friction factors for pipe flow[J].Journal of fluids engineering,1944,66(8):671- 684.
[28] BITTLE R,PATE M.A theoretical model for predicting adiabatic capillary tube performance with alternative refrigerants[J].Engineering,1996,102:52- 64.
[29] STOECKER W F,JONES W N.Refrigeration and air conditioning[M].New York:The McGaw-Hill,1982:88- 102.
[30] 陈卓如,金朝铭,王洪杰,等.工程流体力学[M].北京:高等教育出版社,2004:242.
[31] CICCHITTI A,LOMBARDI C,SILVESTRI M,et al.Two-phase cooling experiments:pressure drop,heat transfer and burnout measurements[M].Milan:Centro Informazioni Studi Esperienze,1960:407- 425.
[32] MCADAMS W H,WOODS W K,HEROMAN L C.Vaporization inside horizontal tubes:Ⅱ benzene-oil mixtures[J].Journal of fluids engineering,1942,64(3):193- 199.
[33] DUKLER A E,WICKS M,CLEVELAND R G.Frictional pressure drop in two-phase flow:A.a comparison of existing correlations for pressure loss and holdup[J].AIChE journal,1964,10(1):38- 43.
[34] DUKLER A E,WICKS M,CLEVELAND R G.Frictional pressure drop in two-phase flow:B.an approach through similarity analysis[J].AIChE journal,1964,10(1):44- 51.
[35] AKERS W W,DEANS H A,CROSSER O K.Condensing heat transfer within horizontal tubes[J].Chemical engineering progress,1959,55:89- 90.
[36] 丁国良,欧阳华,李鸿光.制冷空调装置数字化设计[M].北京:中国建筑工业出版社,2008:62- 63.
[37] MEFTAH K,OWEIS A.A practical method of selecting capillary tubes for HCFC22 alternatives[EB/OL].[2021-10-01].https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1779&context=iracc.
[38] YILMAZ T,UNAL S.General equation for predicting adiabatic capillary tube performance with alternative refrigerants[G]//ASHRAE.ASHRAE transactions 1996:part(2).Atlanta:ASHRAE Inc.,1996:52- 64.
Verification of R32 flow model in adiabatic capillary
Abstract: This paper establishes a one-dimensional homogeneous model of R32 flowing in an adiabatic capillary, and verifies the accuracy of the model with experimental data. The prediction performance is compared by using different combinations of five friction factor correlations and four viscosity correlations in present literature. The results show that f=F(Re) model and f=F(ε/D,Re) model have similar prediction value in low Reynolds number region. As the Reynolds number increases, the effect of surface roughness makes the prediction value of f=F(ε/D,Re) model is significantly larger than that of f=F(Re) model, while the prediction accuracy of the mass flow rate of f=F(ε/D,Re) model is also better than that of f=F(Re) model. In f=F(Re) model, the Bittle and Pate-Dukler model has a minimum average absolute deviation(6.99%), with 76.92% of the data points having relative deviations within ±10%, and 94.87% of the data points having relative deviations within ±20%. In f=F(ε/D,Re) model, the Moody-Dukler model has a minimum average absolute deviation(6.38%), with 82.05% of the data points having relative deviations within ±10%, and 97.44% of the data points having relative deviations within ±20%.
Keywords: R32; adiabatic capillary; viscosity; friction factor; flow model;
872
0
0