自攻螺钉增强胶合木沿胶缝横纹受压承载力试验研究

引用文献:

周金将 杨舒涵 纪微 凌志彬. 自攻螺钉增强胶合木沿胶缝横纹受压承载力试验研究[J]. 建筑结构,2022,48(18):138-144,132.

ZHOU Jinjiang YANG Shuhan JI Wei LING Zhibin. Experimental study on compressive bearing capacity of glulam strengthened by self-tapping screws along glued seam[J]. Building Structure,2022,48(18):138-144,132.

作者:周金将 杨舒涵 纪微 凌志彬
单位:苏州昆仑绿建木结构科技股份有限公司 苏州科技大学江苏省结构工程重点实验室
摘要:采用自攻螺钉对胶合木梁侧进行横纹增强,并开展4组(含未增强组)胶合木梁侧横纹承压试验。结果表明,3种增强方式对胶合木梁侧的横纹承压性能均有不同程度提高,单侧通长贯入螺钉组试件最终发生了局部屈曲破坏,而其他组螺钉变形不明显;相比于未增强组试件,单侧通长贯入螺钉、双面贯入螺钉和双侧斜交螺钉组试件的横纹承压荷载分别提高了25.9%、34.5%和44.8%;单侧通长贯入螺钉组试件表现出了最高的等效横纹承压弹性模量,为333.6N/mm2,而其他两种增强方式的等效横纹承压弹性模量略低于未增强组试件。荷载-应变关系表明,自攻螺钉的引入能有效改善承压面下木材应变的分布。采用欧洲标准EN 408与ISO 13910标准获得的横纹承压强度较为接近,而按照《木结构试验方法标准》(GB/T 50329—2012)获得的结果偏于保守;有限元模型总体上能有效预测自攻螺钉增强后的胶合木梁侧横纹承压性能。
关键词:胶合木;自攻螺钉;横纹承压;局部变形
作者简介:周金将,硕士,工程师,主要从事木结构设计与施工研究,Email:zhou.jinjiang@crownhomes.cn。凌志彬,博士,副教授,硕士生导师,主要从事木结构、木-混凝土/钢-木组合结构研究,Email:zbling@mail.usts.edu.cn。
基金:国家自然科学基金青年基金资助项目(51708382);江苏省自然科学基金项目(BK20221387);江苏省“六大人才高峰”资助项目(JZ-038)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] LEIJTEN A J M,LARSEN H J,VAN DER PUT T A C M.Structural design for compression strength perpendicular to the grain of timber beams[J].Construction and Building Materials,2010,24(3):252-257.
[2] LEIJTEN A J M,JORISSEN A J M,DE LEIJER B J C.The local bearing capacity perpendicular to grain of structural timber elements[J].Construction and Building Materials,2012,27(1):54-59.
[3] LEIJTEN A J M,FRANKE S,QUENNEVILLE P,et al.Bearing strength capacity of continuous supported timber beams:unified approach for test methods and structural design codes[J].Journal of Structural Engineering,2012,138(2):266-272.
[4] LEIJTEN A J M.The bearing strength capacity perpendicular to grain of Norway spruce -Evaluation of three structural timber design models[J].Construction and Building Materials,2016,105:528-535.
[5] LEIJTEN A J M.A general bearing deformation model for timber[J].Construction and Building Materials,2018,165:707-716.
[6] PUT T A C M.Derivation of the bearing strength perpendicular to the grain of locally loaded timber blocks[J].Holz Als Roh-Und Werkstoff,2008,66(6):409-417.
[7] 张熙.植筋增强木构件横纹承压研究[D].哈尔滨:哈尔滨工业大学,2016.
[8] 唐立秋,徐伟,杨会峰,等.自攻螺钉增强胶合木横纹承压性能试验 [J].南京工业大学学报(自然科学版),2021,43(1):94-100.
[9] GEHLOFF M,CLOSEN M,LAM F.Reduced edge distances in bolted timber moment connections with perpendicular to grain reinforcements [C]//Proceedings of 11th World Conference on Timber Engineering.Trentino,2010.
[10] ECHAVARRÍALÓPEZ C A.Bolted timber joints with self-tapping screws[J].Revistaa,2007,8(8):37-47.
[11] 陆伟东,孙洪锋,刘伟庆.自攻螺钉增强胶合木梁柱螺栓节点受力性能试验研究[J].建筑结构学报,2016,37(4):80-86.
[12] 刘慧芬,何敏娟.自攻螺钉参数设置对胶合木梁柱节点受力性能的影响[J].建筑结构学报,2015,36(7):148-156.
[13] 结构用集成材:GB/T 26899—2011[S].北京:中国标准出版社,2011.
[14] 木结构试验方法标准:GB/T 50329—2012[S].北京:建筑工业出版社,2012.
[15] Structural timber and glued laminated timber—determination of some physical and mechanical properties:CEN E S I.EN 408[S].Brussels:CEN,European Standardisation Institute,2003.
[16] Standard methods of testing small clear specimens of timber:ASTM D143-94[S].West Conshohocken:ASTM,2000.
[17] Timber structures—strength graded timber—test methods for structural properties:ISO 13910[S].Geneva:International Organization for Standardization,2014.
[18] Timber-stress graded—in grade strength and stiness evaluation:AS/NZS 4063[S].Sydney:Standards Australia,1992.
[19] GAGNON S,PIRVU C.CLT Handbook:cross laminated timber[M].Pointe-Claire:FP Innovations,2011.
[20] 徐博瀚,蔡竞.木材强度准则的研究进展[J].土木工程学报,2015,48(1):64-73.
Experimental study on compressive bearing capacity of glulam strengthened by self-tapping screws along glued seam
ZHOU Jinjiang YANG Shuhan JI Wei LING Zhibin
(Suzhou Crownhomes Co., Ltd. Jiangsu Key Laboratory of Structure Engineering, Suzhou University of Science and Technology)
Abstract: Self-tapping screws were used to strengthen the lateral side of the glulam beam perpendicular to grain, and lateral bearing tests on the glulam beams perpendicular to grain were carried out on four groups of glulam beams including the non-strengthened group. The results show that the three strengthening methods can improve the bearing performance of the glulam beams perpendicular to grain to different degrees. The specimens in the unilateral long-penetrating screw group eventually have local buckling failure, while the other groups have no obvious deformation. Compared to non-strengthened group, the compression loading perpendicular to grain of the strengthened groups of specimens can be improved by 25.9% for fully penetrated self-tapping screws, 34.5% for double-sides drilled self-tapping screws and 44.8% for cross-drilled self-tapping screws. The specimens with fully penetrated self-tapping screws exhibit the highest average equivalent compression modulus perpendicular to grain of 333.6 N/mm2. The other two strengthened groups show slight low equivalent compression modulus perpendicular to grain compared to the non-strengthened group. The load-strain relationship indicates that the use of self-tapping screws can redistribute the compression strain perpendicular to grain under the bearing area effectively. The compression intensity of pressure perpendicular to grain calculated according to European standard EN 408 is close to that obtained by ISO 13910 standard; however, the result based on the standard for test methods of timber structures(GB/T 50329—2012) is conservative. The numerical model is generally able to predict the lateral compressive behavior of the glulam beams perpendicular to grain strengthened by self-tapping screws.
Keywords: glulam; self-tapping screw; compression perpendicular to grain; local deformation
388 0 0
文字:     A-     A+     默认 取消