方钢管混凝土短柱的轴压承载力简化计算方法研究

引用文献:

马立成 史庆轩 王秋维. 方钢管混凝土短柱的轴压承载力简化计算方法研究[J]. 建筑结构,2022,48(18):65-71.

MA Licheng SHI Qingxuan WANG Qiuwei. Research on simplified calculation method of axial compressive bearing capacity of concrete-filled square steel tubular short column[J]. Building Structure,2022,48(18):65-71.

作者:马立成 史庆轩 王秋维
单位:西安建筑科技大学土木工程学院 西安建筑科技大学西部绿色建筑国家重点实验室 西安建筑科技大学结构工程与抗震教育部重点实验室
摘要:为提高方钢管混凝土短柱轴压承载力的计算精度和效率,收集了国内外167个方钢管混凝土短柱的轴压试验资料;探讨了方钢管混凝土短柱在两种不同加载方式下的破坏机理,阐明了方钢管混凝土短柱轴压极限承载力不受加载方式影响的原因;引入“约束效应”系数,分析了混凝土强度、钢管强度、钢管宽厚比(B/t)对“约束效应”的影响;以极限平衡理论为基础,从方钢管混凝土短柱的理想轴压极限状态出发,推导了轴压承载力计算公式;考虑了方钢管对核心混凝土约束的不均匀问题,从而修正了方钢管混凝土短柱的轴压承载力计算公式。计算结果表明:该计算方法能够准确计算出方钢管混凝土短柱的轴压承载力。将该计算方法与中、美两国规范计算方法对比后发现,该方法计算结果比中国规范略微保守,较美国规范经济。该公式可以应用于B/t≥20的方钢管混凝土短柱轴压承载力计算。
关键词:方钢管混凝土短柱;轴压承载力计算;极限平衡理论;破坏机理;公式修正
作者简介:马立成,博士研究生,主要从事高层建筑结构及其抗震研究,Email:licheng_ma@163.com。史庆轩,博士,教授,博士生导师,主要从事混凝土结构及抗震研究,Email:shiqx@xauat.edu.cn。
基金:国家自然科学基金面上项目(51878540,51878543);国家重点研发计划课题(2017YFC0703406)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 韩林海.钢管混凝土结构:理论与实践[M].3版.北京:科学出版社,2016.
[2] 经承贵,陈宗平,周山崴,等.方钢管螺旋筋复合约束混凝土轴压短柱破坏机理试验研究[J].建筑结构学报,2018,39(3):93-102.
[3] 史庆轩,戎翀,任浩,等.基于统一强度理论的钢管混凝土柱承载力计算[J].力学季刊,2015,36(4):690-696.
[4] 赵均海,顾强,马淑芳.基于双剪统一强度理论的轴心受压钢管混凝土承载力的研究[J].工程力学,2002,19(2):34-37.
[5] 肖海兵,赵均海,孙楚平,等.薄壁钢管轻骨料混凝土轴压短柱承载力分析[J].建筑结构,2012,42(11):101-106.
[6] 韩林海,陶忠.方钢管混凝土轴压力学性能的理论分析与试验研究[J].土木工程学报,2001,34(2):17-25.
[7] 唐广青,肖岩,张倚天.方钢管混凝土轴压短柱承载力与全曲线综述研究[J].工程力学,2015,32(8):103-111.
[8] 钢管混凝土结构技术规范:GB 50936—2014 [S].北京:中国建筑工业出版社,2014.
[9] 钟善桐.钢管混凝土结构[M].3版.北京:清华大学出版社,2003.
[10] 钟善桐.钢管混凝土统一理论:研究与应用[M].北京:清华大学出版社,2006.
[11] 蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003.
[12] KENJI SAKINO,HIROYUKI NAKAHARA,SHOSUKE MORINO,et al.Behavior of centrally loaded concrete-filled steel-tube short columns[J].Journal of Structural Engineering,2004,130 (2):180-188.
[13] LIU D L,GHO W M.Axial load behaviour of high-strength rectangular concrete-filled steel tubular stub columns[J].Thin-Walled Structures,2005,43(8):1131-1142.
[14] ZHANG S M,GUO L H,YE Z L,et al.Behavior of steel tube and confined high strength concrete for concrete-filled RHS tubes[J].Advances in Structural Engineering,2005,8(2):101-116.
[15] 蔡绍怀,焦占拴.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报,1984,5(6):13-29.
[16] 蔡健,龙跃凌.带约束拉杆方形、矩形钢管混凝土短柱的轴压承载力[J].建筑结构学报,2009,30(1):7-14.
[17] 混凝土结构设计规范:GB 50010—2010 [S].北京:中国建筑工业出版社,2011.
[18] 过镇海.钢筋混凝土原理[M].北京:清华大学出版社,2015.
[19] 郎,杨志坚,蒋连接.方钢管高强混凝土短柱轴压试验研究[J].低温建筑技术,2011,33(11):42-45.
[20] 张素梅,郭兰慧,叶再利,等.方钢管高强混凝土轴压短柱的试验研究[J].哈尔滨工业大学学报,2004,36(12):1610-1614.
[21] 吕西林,余勇,陈以一.轴心受压方钢管混凝土短柱的性能研究:I 试验[J].建筑结构,1999,29(10):41-43.
[22] 郭兰慧,张素梅,刘界鹏.不同加载模式下方钢管混凝土力学性能试验研究与理论分析[J].工程力学,2008(9):143-148.
[23] HAN L H,YAO G H.Experimental behaviour of thin-walled hollow structural steel (HSS)columns filled with self-consolidating concrete (SCC)[J].Thin-Walled Structures,2004,42(9):1357-1377.
[24] SCHNEIDER S P.Axially loaded concrete-filled steel tubes[J].Journal of Structural Engineering,1998,124 (10):1125-1138.
[25] UY B.Local and post-local buckling of concrete filled steel welded box columns[J].Journal of Constructional Steel Research,1998,47(1/2):47-72.
[26] HUANG C S,YEH Y K,LIU G Y,et al.Axial load behavior of stiffened concrete-filled steel columns[J].Journal of Structural Engineering,2002,128(9):1222-1230.
[27] HAN L H,YAO G H,ZHAO X L.Tests and calculations for hollow structural steel (HSS)stub columns filled with self-consolidating concrete (SCC)[J].Journal of Constructional Steel Research,2005,61(9):1241-1269.
[28] LIU D L.Tests on high-strength rectangular concrete-filled steel hollow section stub columns[J].Journal of Constructional Steel Research,2005,61(7):902-911.
[29] CHEN C C,KO J W,HUANG G L,et al.Local buckling and concrete confinement of concrete-filled box columns under axial load[J].Journal of Constructional Steel Research,2012,78:8-21.
Research on simplified calculation method of axial compressive bearing capacity of concrete-filled square steel tubular short column
MA Licheng SHI Qingxuan WANG Qiuwei
(School of Civil Engineering, Xi'an University of Architecture & Technology State Key Laboratory of Green Building in Western China, Xi'an University of Architecture & Technology Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education,Xi'an University of Architecture & Technology)
Abstract: To improve the calculation accuracy and efficiency of axial compressive bearing capacity of concrete-filled square steel tubular(CFST) short columns, the axial compressive test data of 167 specimens of CFST short columns were collected. The failure mechanism of CFST short columns was discussed under two different loading modes, and the reason was clarified why the axial compression ultimate bearing capacity of CFST short column was not affected by loading modes. The influence of concrete strength, steel tubular strength and steel tubular width thickness ratio(B/t) on restraint effect was analyzed by introducing restraint effect coefficient. Based on limit equilibrium theory, the formula for calculating the axial compressive bearing capacity was deduced from the ideal axial compression limit state of the CFST short column. The problem of confinement non-uniformity was considered with square steel tube to core concrete, and the formula for calculating the axial compressive bearing capacity of CFST short column was modified. The calculation results show that the method can accurately calculate the axial compressive bearing capacity of CFST short columns. Compared with the calculation method of Chinese and America standard, it was found that the calculation result of the method is more conservative than that of China and more economical than that of America. The formula could be used to calculate the axial compressive bearing capacity of CFST short columns of B/t≥20.
Keywords: concrete-filled square steel tubular short column; axial compressive bearing capacity calculation; limit equilibrium theory; failure mechanism; formula correction
379 0 0
文字:     A-     A+     默认 取消