高强钢管高强混凝土短柱轴压承载能力试验研究

引用文献:

曾志伟 黄永辉 陈碧静 谭鼎融. 高强钢管高强混凝土短柱轴压承载能力试验研究[J]. 建筑结构,2022,48(18):72-77.

ZENG Zhiwei HUANG Yonghui CHEN Bijing TAN Dingrong. Experimental study on bearing capacity of short columns with high-strength concrete-filled high strength steel tubes under axial loading[J]. Building Structure,2022,48(18):72-77.

作者:曾志伟 黄永辉 陈碧静 谭鼎融
单位:广州大学风工程与工程振动研究中心
摘要:对9组共27个高强钢管高强混凝土和高强钢管普通混凝土短柱试件进行轴压试验,观察并研究其荷载-位移曲线及破坏模式的异同。试验结果表明:高强钢管普通混凝土试件与钢管高强混凝土试件的荷载-位移曲线存在明显的区别,高强钢管普通混凝土试件的延性优于钢管高强混凝土试件。钢管约束能有效提高混凝土的极限承载力,对高强混凝土的提高尤为明显,原本脆性的高强混凝土表现出一定的延性,且延性随着套箍系数的增加而增加。所有试件按《钢管混凝土结构技术规范》(GB 50936—2014)公式的计算值与实测值均吻合良好,表明该公式不仅适用于高强钢管普通混凝土,还适用于高强钢管高强混凝土。
关键词:高强钢管高强混凝土;轴压试验;极限承载力;荷载-位移曲线;套箍系数
作者简介:曾志伟,硕士,主要从事新结构和组合结构研究,Email:zeng_zhiwei@e.gzhu.edu.cn。黄永辉,博士,副研究员,主要从事拱结构稳定性研究,Email:huangyh@gzhu.edu.cn。
基金:国家自然科学基金面上项目(51878188、51678169)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003.
[2] 韩林海.钢管混凝土结构:理论与实践[M].3版.北京:科学出版社,2016.
[3] 黄靓,林明明,高畅,等.钢管含砖骨料再生混凝土柱轴压力学性能试验研究[J].铁道科学与工程学报,2020,17(3):699-706.
[4] 丁发兴,李大稳,余志武.哑铃型钢管混凝土轴压短柱力学性能分析[J]铁道科学与工程学报,2011,8(2):1-6.
[5] 混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2011.
[6] 钢管混凝土结构技术规范:GB 50936—2014[S].北京:中国建筑工业出版社,2014.
[7] 韦建刚,罗霞,陈宝春,等.圆高强钢管超高性能混凝土短柱轴压性能试验研究[J].建筑结构学报,2020,41(11):16-28.
[8] 李大稳.钢管混凝土短柱力学性能研究[D].长沙:中南大学,2012.
[9] 方小丹,林斯嘉.复式钢管高强混凝土柱轴压试验研究[J].建筑结构学报,2014,35(4):242-251.
[10] 孙墨林.钢管约束型钢超高强混凝短柱轴压受力性能研究[D].大连:大连理工大学,2016.
[11] 颜燕祥,徐礼华,蔡恒,等.高强方钢管超高性能混凝土短柱轴压承载力计算方法研究[J].建筑结构学报,2019,40(12):131-140.
[12] 熊明祥,LIEW J Y R.高层建筑中高强钢管混凝土的设计研究[J].建筑结构,2015,45(11):42-47.
[13] LIU DALIN,GHO WIE MIN,YUAN JIE.Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns [J].Journal of Constructional Steel Research,2003,59(12):1499-1515.
[14] YANG JUNLONG,WANG JIZHONG,WANG XINPEI,et al.Compressive behavior of circular tubed steel-reinforced high-strength concrete short columns [J].Journal of Structral Engineering,2019,145(9):4019086.
[15] LAI BINGLIN,LIEW JAT YUEN RICHARD,XIONG MINGXIANG.Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete [J].Steel and Composite Structures,2019,33(1):67-79.
[16] B UY.Strength of short concrete filled high strength steel box columns [J].Journal of Constructional Steel Research,2001,57(2):113-134.
[17] AMIT H VARMA,JAMES M RICLES,RICHARD SAUSE,et al.Experimental Behavior of high strength square concrete-filled steel tube beam-columns [J].Journal of Structural Engineering,2002,128(3):309-318.
Experimental study on bearing capacity of short columns with high-strength concrete-filled high strength steel tubes under axial loading
ZENG Zhiwei HUANG Yonghui CHEN Bijing TAN Dingrong
(Research Center for Wind Engineering and Engineering Vibration, Guangzhou University)
Abstract: Experimental investigation on 9 groups of 27 concrete filled high-strength steel tube(CFHST) and high-strength concrete-filled high-strength steel tube(HSCFHST) short columns under axial compressive load was proposed. The similarities and differences of load-displacement curves and failure modes between them were analyzed. The test results show a significant difference between the load-displacement curves of CFHST and HSCFHST specimens. The ductility of CFHST specimens is superior to that of HSCFHST. The steel tube's restraint can effectively improve the ultimate bearing capacity of concrete, especially for the improvement of high-strength concrete. The original brittle HSCFHST obtains a certain ductility and the ductility increases with the increase of the confinement coefficient. The measured ultimate loads of all the test specimens are in good agreement with the calculated values given by the formula in Technical specifications for concrete filled steel tubular structures(GB 50936—2014), indicating that this formula presented by Chinese code applies not only to CFHST but also to HSCFHST.
Keywords: high-strength concrete-filled high-strength steel tube; axial compression test; ultimate capacity; load-displacement curve; confinement coefficient
374 0 0
文字:     A-     A+     默认 取消