区域供冷系统冷却水管路水力仿真优化

作者:旷金国 王朝晖 罗曙光 陈盛阶 叶圳 许健
单位:深圳市前海能源科技发展有限公司
摘要:建立了区域供冷系统冷却水管路精细化水力仿真模型,采用理论分析与实验相结合的方法,对深圳前海10号制冷站1期冷却水系统设计与运行数据进行了分析。实验校核结果表明,采用本文仿真模型能较精确地计算整个管路系统及分段管路压降,可以较为精确地预测冷却水管路水力学现象,并用于工程分析。利用仿真模型得到了管路所有管件的阻力及各个管件的机械功耗,提出了高效机房管路减阻优化方法。与传统设计计算模型的对比发现,传统水力计算中90°弯头、三通等管件的局部阻力系数取值偏大导致管路水泵扬程计算结果与实际值有较大偏差。
关键词:区域供冷系统水力仿真模型实验验证压降分布功耗分布高效机房减阻优化
作者简介:旷金国,男,1984年生,硕士研究生,高级工程师;*王朝晖(通信作者)518054深圳市前海合作区前海深港创新中心A组团,E-mail:wangzh@qhholding.com;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 徐伟.中国高效空调制冷机房发展研究报告(2021)[M].北京:中国建筑工业出版社,2022:4- 7.

[2] 何恒钊,屈国伦,谭海阳,等.广州白天鹅宾馆改造工程暖通空调系统绿色节能设计[J].暖通空调,2016,46(1):33- 37.

[3] 钟云源,黄建麟,彭崇波,等.白天鹅宾馆空调水系统低阻工程技术[J].制冷,2017,37(2):38- 43.

[4] 谭海阳,屈国伦,何恒钊,等.基于高效制冷机房系统能效分级评价的冷源系统模型构建[J].暖通空调,2021,51(11):33- 38.

[5] 谭海阳,李继路,屈国伦,等.某大学既有教学楼高效空调系统设计[J].暖通空调,2022,52(12):25- 29.

[6] 刘冰韵,陈国恺,王颖.高效制冷机房优化设计方法及计算分析工具研究[J].暖通空调,2022,52(11):85- 91.

[7] 李元阳,黄国强,阎杰,等.超高效中央空调系统集成解决方案探析[J].制冷与空调,2019,19(7):6- 12.

[8] 韩广宇.某办公楼高效制冷机房节能改造项目运行能效分析[J].制冷与空调,2022,22(2):64- 69.

[9] 梁军,李承泳.北京某写字楼项目暖通空调高效制冷机房设计[J].建筑热能通风空调,2017,36(9):103- 105.

[10] 张昆,宋业辉,钱程.高效制冷机房性能化设计方法研究[J].暖通空调,2021,51(增刊1):296- 301.

[11] 谭海阳,屈国伦,黄冬娜,等.基于能效目标的某酒店空调系统节能改造[J].暖通空调,2022,52(12):13- 18,105.

[12] 郝志刚,邓杰文,魏庆芃,等.公共建筑空调系统全过程管理方法研究(2):设计阶段系统优化与能耗、能效目标设定[J].暖通空调,2019,49(1):77- 83.

[13] 马建波,王朝晖,旷金国,等.蓄冷供冷系统的节能效益分析[J].暖通空调,2021,51(12):33- 37.

[14] 罗曙光,王朝晖,旷金国.区域供冷系统冷水输配运行控制分析[J].暖通空调,2021,51(12):9- 15.

[15] 旷金国,王朝晖,罗曙光.区域供冷系统外管网冷量损失分析[J].暖通空调,2021,51(12):16- 21.

[16] 符永正,谢雯雯,俞程祎.基于实测的集中空调系统水泵选型与节能分析[J].暖通空调,2014,44(9):101- 104,10.

[17] 邓立强.应用Excel 编制供暖空调管路水力计算表[J].暖通空调,2007,37(9):120- 122,130.

[18] 旷金国,王朝晖,戴明明.区域供冷系统水回路管件局部阻力系数综述[J].暖通空调,2022,52(12):88- 95.

[19] 张铭洋,岳奕彤.基于仿真模拟的VVER 核电机组主给水系统水力计算研究[J].中国核电,2022,15(3):309- 315.

[20] 蔡煜,姚国富,张波.基于FlowMaster仿真的变频器水冷管路优化设计[J].船电技术,2022,42(1):59- 61.

[21] 李晓明,张桂英,李志凯,等.AFT流体分析软件在发电厂优化设计中的应用[J].能源工程,2011(5):45- 49.

[22] 王玉琴.复杂循环水系统设计和Fathom软件结合的分析探讨[J].上海化工,2022,47(5):27- 33.

[23] 周建秋,张洁,周向阳.PDMS三维模型管道水头损失精确计算方式研究[J].自动化仪表,2020,41(6):73- 76.

[24] 梅星新,汤玲迪,汤跃.FLOWMASTER在空调冷水系统水力平衡中的应用[J].暖通空调,2014,44(4):92- 95.

[25] FRIED E,IDELCHIK I E.Flow resistance:a design guide for engineers[M].Philadelphia:Taylor & Francis Ltd.,1989:159- 253.

[26] MILLER D S.Internal flow systems[M].Cranefield:BHRA Fluid Engineering,1978:141,169,226,229,232- 233,237.

[27] 陆耀庆.实用供热空调设计手册[M].2 版.北京:中国建筑工业出版社,2008:1990,1992.

[28] British Hydromechanical Research Association.Flow of fluids through valves,fittings,and pipe[M].New York:Crane,1982:A26,A28- A29.
Hydraulic simulation and optimization of cooling water circuit of district cooling systems
Kuang Jinguo Wang Zhaohui Luo Shuguang Chen Shengjie Ye Zhen Xu Jian
(Shenzhen Qianhai Energy Technology Development Co., Ltd.)
Abstract: A detailed hydraulic simulation model is developed for the cooling water circuit of district cooling system(DCS), and the design and operation data of Qianhai DCS plant No. 10 phase 1 in Shenzhen are analysed by combining theoretical and experimental analysis. The experimental results show that the simulation model can accurately calculate the pressure drops of the whole pipeline system and the segmented pipeline, and can accurately predict the hydraulic phenomenon of the cooling water pipeline, which can be used for engineering analysis. The simulation model is used to obtain the resistance of all pipe fittings and the mechanical power consumption of each pipe fitting, and a drag reduction optimization method of the high efficiency chiller plant pipelines is proposed. The comparison with the traditional design calculation model shows that the local resistance coefficient of 90°elbow, tee and other pipe fittings in the traditional hydraulic calculation is too large, which leads to a large deviation between the calculation result of the pump head of the pipeline and the actual value.
Keywords: district cooling system; hydraulic simulation model; experimental validation; pressure drop distribution; power consumption distribution; high efficiency chiller plant; drag reduction optimization;
374 0 0
文字:     A-     A+     默认 取消