夏热冬暖地区下沉广场对地下综合交通枢纽通风性能的影响

作者:赵建建 王敬远 何峰 崔奇杰 那艳玲 董建锴 刘京
单位:哈尔滨工业大学 哈尔滨工业大学寒地城乡人居环境科学与技术工业和信息化部重点实验室 中国铁路设计集团华南分公司 中国铁路设计集团有限公司 城市轨道交通数字化建设与测评技术国家工程实验室
摘要:对夏热冬暖地区有下沉广场的地下综合交通枢纽冬夏两季空调运行工况进行了CFD模拟,得到了冬夏季典型工况各层主要截面的风速场和下沉广场设置所导致的进出风情况,并基于准静风区、换气次数等概念对其进行了分析。结果显示:夏季工况下沉广场进出风呈现“一进三出”的特点,冬季工况呈现“两进两出”的特点;由于玻璃幕墙的设置,在玻璃幕墙内形成了明显的空气流道;室外风向变化与下沉广场设置情况、开口面积、内部结构共同作用影响建筑通风性能,并且室外气流更容易通过开口方向与风向相同、开口面积较大、内部无大量隔断墙等结构的下沉广场进入室内。
关键词:下沉广场地下综合交通枢纽通风夏热冬暖地区准静风区换气次数风速CFD模拟
作者简介:赵建建,女,1992年生,在读博士研究生;*刘京,150090黑龙江省哈尔滨市南岗区黄河路73号哈尔滨工业大学建筑学院,E-mail:liujinghit0@163.com;
基金:中国铁路设计集团有限公司科技开发课题“地下大型公共交通枢纽内部环境保障关键技术研究”(编号:2019YY220304);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 郭昊栩,邓孟仁,李颜.下沉广场对地下商业空间通风性能的影响[J].华南理工大学学报,2014,42(6):114- 119.

[2] 汤毅,陈晓文,卢佳华,等.超高大空间某馆内空调CFD的模拟研究[J].建筑热能通风空调,2016,35(5):53- 56.

[3] 徐东升.城市中心型轨道交通站点地区地下空间规划策略研究[D].徐州:中国矿业大学,2017:46- 70.

[4] 苏小超,陈志龙,杨晓彬,等.城市下沉广场绿化配置对广场内热环境的影响[J].解放军理工大学学报,2017(1):1- 6.

[5] 李楠,马季,刘皓.夏热冬冷地区居住建筑混合通风系统分析[J].暖通空调,2016,46(7):111- 115.

[6] CÉSAR P A,FERNANDO R M,IGNACIO C,et al.Natural ventilation analysis in an underground construction:CFD simulation and experimental validation[J].Tunnelling and underground space technology,2019,90:162- 173.

[7] MUKHTAR A,NG K C,YUSOFF M Z.Passive thermal performance prediction and multi-objective optimization of naturally-ventilated underground shelter in Malaysia[J].Renewable energy,2018,123:342- 352.

[8] BU Z,KATO S,TAKAHASHI T.Wind tunnel experiments on wind-induced natural ventilation rate in residential basements with areaway space[J].Building and environment,2010,45:2263- 2272.

[9] FRANKE J,HELLSTEN A,SCHLÜNZEN H,et al.The COST 732 Best practice guideline for CFD simulation of flows in the urban environment:a summary[J].International journal of environment & pollution,2011,44(1/2):419- 427.

[10] TOMINAGA Y,MOCHIDA A,YOSHIE R,et al.AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J].Journal of wind engineering & industrial aerodynamics,2008,96(10):1749- 1761.

[11] 娄君.CFD风口模型的研究与应用[D].成都:西南交通大学,2012:27- 37.

[12] 郑聪.人员密集场所室内流场实验及数值模拟研究[D].哈尔滨:哈尔滨工业大学,2015:24- 35.

[13] 陆亚俊.暖通空调[M].北京:中国建筑工业出版社,2002:216- 252.

[14] 谢君琳.广州地区可通风中庭热环境模拟与实测研究[D].广州:华南理工大学,2011:69- 79.
Influence of sunken squares on ventilation of underground comprehensive transportation hubs in hot summer and warm winter zone
Zhao Jianjian Wang Jingyuan He Feng Cui Qijie Na Yanling Dong Jiankai Liu Jing
(Harbin Institute of Technology Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology China Railway Design Corporation,Southern China Branch China Railway Design Corporation National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit)
Abstract: The air conditioning operating conditions of the underground comprehensive transportation hub with the sunken square are simulated by CFD in hot summer and warm winter zone in winter and summer, and the distribution of the wind speed of the main cross-section of each floor and the wind in and out caused by the setting of the sunken square under typical winter and summer conditions are obtained and analysed based on the concepts of quasi-quiet wind area and air change rates. The results show that the wind entering and exiting the sunken square presents the characteristics of “one in and three out” under the summer condition and “two in and two out” under the winter condition. Due to the installation of the glass curtain wall, there is an obvious air flow path in the glass curtain wall. The ventilation performance of the building is affected by the change of outdoor wind direction, the setting of the sunken square, the opening area and the internal structure, and the outdoor air is easier to enter the indoor through the sunken square whose opening direction is the same as the wind direction, with large opening area and no large number of internal partition walls.
Keywords: sunken square; underground comprehensive transportation hub; ventilation; hot summer and warm winter zone; quasi-quiet wind area; air change rate; wind speed; CFD simulation;
523 0 0
文字:     A-     A+     默认 取消