基于核能低温供热堆调节特性的基本热负荷确定方法研究

作者:Solomykov Aleksr 赵金玲 顾青青 吴咪
单位:大连理工大学
摘要:基于低温供热堆季节性功率调节幅度分析,推导了低温供热堆基本热负荷系数与功率调节幅度及供热负荷的函数关系,并给出了我国严寒和寒冷地区以供暖为主的低温供热堆系统基本热负荷系数范围。通过与俄罗斯(含苏联)建设的低温供热堆核能供热站设计数据对比,检验了该基本热负荷系数范围的合理性,即在功率调节幅度为10%的条件下,以供暖为主的低温供热堆基本热负荷系数严寒地区可取0.30~0.45,寒冷地区可取0.45~0.60。以严寒地区某核能供热系统为例,计算了低温供热堆的设备容量、调峰热源容量并分析了非供暖期提高核能利用率的设计方案。
关键词:核能低温供热堆功率调节基本热负荷集中供热严寒地区寒冷地区
作者简介:作者简介:Solomykov Aleksandr,男,1994年生,硕士研究生;*赵金玲(通信作者)116024辽宁省大连市甘井子区凌工路2号大连理工大学土木工程学院,E-mail:zhaojinling@dlut.edu.cn;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] World Energy Council.World energy scenarios 2019|the future of nuclear:diverse harmonies in the energy transition[EB/OL].[2021-08-01].https://www.worldenergy.org/ assets/ downloads/ Nuclear_Scenarios_Exec_Summary_FINAL_for_website.pdf.

[2] 国家核安全局.低温核供热堆厂址选择安全准则:HAF J0059—1996[S].北京:国家核安全局,1996:3- 4.

[3] 王大中,董铎,苏庆善,等.5 MW低温核供热试验堆三个冬季供热运行总结[J].中国核科技报告,1992(7):635- 656.

[4] 柯国土,刘兴民,郭春秋,等.泳池式低温供热堆技术进展[J].原子能科学技术,2020,54(增刊1):206- 212.

[5] 李言瑞,白云生,韩绍阳,等.核能供热发展现状及趋势分析[C]//中国核学会2019年学术年会论文集,2019:129- 134.

[6] 阎昌琪.核反应堆工程[M].哈尔滨:哈尔滨工程大学出版社,2020:306- 388.

[7] 刘隆祉,安珍彩,赵海歌,等.200 MW核供热堆功率调节系统设计原理[J].核动力工程,1995,16(5):447- 453.

[8] БЛАГОВЕЩЕНСКИЙ А Я,ГУСЕВ Л Б.Перспектива реализации атомного теплоснабжения в Pоссии[J].Технологии обеспечения жизненного цикла ядерных энергетических установок ЯЭУ,2020,19 (1):13- 20.

[9] TERSVIRTA A,SYRI S,HILTUNEN P.Small nuclear reactor:nordic district heating case study[J].Energies,2020,13 (15):3782- 3783.

[10] 郭奇志.低温核热源与常规热源耦合界面的可行性分析[J].区域供热,2011,30(2):26- 31.

[11] 龚云峰,刘信荣,邢馥吏.齐齐哈尔市核供热站予可行性研究简介[J].区域供热,1987,6(3):16- 31.

[12] ZHANG Y X,CHENG H P,LIU X M,et al.Swimming pool-type low-temperature heating reactor:recent progress in research and application[J].Energy procedia,2017,127:425- 431.

[13] FEUTRY S.Load following EDF experience feedback[C]//IAEA Technical Meeting on Flexible (Non-baseload) Operation Approaches for Nuclear Power Plants,2013:28- 29.

[14] IAEA.Power reactor information system (PRIS) :miscellaneous reports:nuclear share[EB/OL].[2021-08-01].https://pris.iaea.org/PRIS/World Statistics/NuclearShareofElectricity Generation.aspx.

[15] Generation achieved by unit-RTE Services Portal[EB/OL].[2021-08-01].https://www.services-rte.com/ en/ view-data-published-by-rte/ generation-achieved-by-unit.html.

[16] 张力玮,段天英,贾玉文.400 MW低温供热堆功率调节系统仿真研究[J].原子能科学技术,2018,52(12):2181- 2187.

[17] 刘金盛,唐金海.核供热厂热化系数的优化[J].热能动力工程,1993,8(5):251- 256.

[18] ГРИГОРЬЕВ В А,ЗОРИНА В М.Промышленная теплоэнергетика и теплотехника[M].2-е изд.Москва:Энергоатомиздат,1991:558- 559.

[19] 何建坤,吕应运.核与煤发电和供热的系统分析及比较评价[J].清华大学学报(自然科学版),1992,32(6):29- 35.

[20] 邹平华.供热工程[M].北京:中国建筑工业出版社,2017:12- 16.

[21] 空气质量在线监测分析平台/区域分布[EB/OL].[2021-08-01].https://www.aqistudy.cn/.

[22] 中国建筑科学研究院.民用建筑热工设计规范:GB 50176—2016[S].北京:中国建筑工业出版社,2016:43- 70.

[23] 中国建筑科学研究院.民用建筑供暖通风与空气调节设计规范:GB 50736—2012[S].北京:中国建筑工业出版社,2012:102- 177.

[24] НИИСФ Р.Строительная климатология:CП131-13330—2012[S].Москва:Минрегион России,2012:6- 15.

[25] САМОЙЛОВ О Б,КУУЛЬ В С,АВЕРБАХ Б А и др.Что такое АСТ-атомная станция теплоснабжения[M].Москва:Энергоатомиздат,1989:5- 7.

[26] СОКОЛОВ Е Я.Теплофикация и тепловые сети(5-е)[M].Москва:Энергоиздат,2009:8- 15.
Determination method of basic heating load based on regulation characteristics of nuclear low-temperature heating reactors
Solomykov Aleksr Zhao Jinling Gu Qingqing Wu Mi
(Dalian University of Technology)
Abstract: Based on the analysis of the seasonal power regulation amplitude of low-temperature heating reactors, the functional relationship between the basic heating load coefficient of low-temperature heating reactors and the power regulation amplitude and the heating load is deduced, and the basic heating load coefficient range of low-temperature heating reactor heating system mainly for heating in severe cold and cold zone in China is proposed. By comparing with the design data of nuclear heating plants with low-temperature heating reactors constructed in Russia(including the Soviet Union), the rationality of the basic heating load coefficient range is verified. When the power regulation range is 10%, the basic heating load coefficient of low-temperature heating reactors mainly used for heating can be taken as 0.30 to 0.45 in severe cold zone and 0.45 to 0.60 in cold zone. Taking a heat supply system equipped with a nuclear heating plant in severe cold zone as an example, the equipment capacity and peak heat source capacity of low-temperature heating reactors are calculated, and some design schemes for improving nuclear energy utilization rate in the non-heating period are analysed.
Keywords: nuclear energy; low-temperature heating reactor; power regulation; basic heating load; district heating; severe cold zone; cold zone;
587 0 0
文字:     A-     A+     默认 取消