地下冷热储能系统热力分析

作者:邬小波 欧阳鑫南 过增元
单位:中能建地热有限公司 清华大学
摘要:从热力学和传热学的角度,分析了地下冷热储能系统的特性,并与地源热泵系统进行了比较。地下冷热储能系统主要是被动供冷或供热,具有更高的能效。因此,需要提高储存能量的品质以达到被动利用的水平,并采用合适的末端放宽用户侧对能源品质的要求,以达到提高储能效率和能源利用率的目的。而构置地下冷热储能过程的冷热分层或分区在最大程度上保持了储能过程的能源品质,同时也强化了传热。
关键词:地下储能含水层储能岩土储能地源热泵能效热力分析
作者简介:邬小波,男,1962年生,博士研究生,技术总监,副教授100020北京市朝阳区西大望路63号阳光财富大厦18层中能建地热有限公司,E-mail:wuxiaobo@126.com;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 邬小波,马捷.中国地下含水层储能技术及其发展[J].能源研究与信息,1999,15(4):8- 11.

[2] 上海市水文地质大队.地下水人工回灌[M].北京:地质出版社,1997:3- 7.

[3] 邬小波,孟超.地下含水层储能技术探讨[J].暖通空调,2021,51(6):93- 96.

[4] BAKEMA G,SNIJDERS A L,NORDELL B.Underground thermal energy storage:state of the art 1994:IEA ECES Annex 8[R].Arnhem:IF Technology,1995:22- 23.

[5] BURKHARD S.High temperature underground thermal energy storage,state of the art and prospects:IEA ECES Annex 12[R].Giessen:Lenz-Verlag,1999:26- 27.

[6] SIBBITT B,MCCLENAHAN D.Seasonal borehole thermal energy storage:guidelines for design & construction:IEA-solar heating & cooling tech sheet 45.B.3.1[R].Ottawa:Natural Resources Canada,2015:1- 15.

[7] PAUL F,BAS G,INGRID S,et al.Worldwide application of aquifer thermal energy storage:a review[J].Renewable and sustainable energy reviews,2018,94:861- 876.

[8] HOEKSTRA N,SLENDERS H,VAN DE VEN F,et al.Europe-wide use of sustainable energy from aquifers E-USE(aq),complete deliverable report[R].Delft:Deltares,2016:6- 7.

[9] AXELL M,BAKKER M,ALBERTO A,et al.Strategic research priorities for cross-cutting technology[R].Brussels:European Technology Platform on Renewable Heating and Cooling,2012:34- 37.

[10] KALLES∅E A J,VANGKILDE P T,NIELSEN J E,et al.Underground thermal energy storage (UTES)-stateof the art,example cases and lessons learned:HEATSTORE project report[R].Copenhagen:GEUS,2019:2- 3.

[11] MANGOLD D,DESCHAINTRE L.Seasonal thermal energy storage,report on state of the art and necessary further R+D:IEA SHC Task 45,large systems[R].Stuttgart:Solites,2015:8- 13.

[12] 坂井正頌,崔林日,淵本剛,等.大規模再生可能エネルギー利用帯水層蓄熱ターボ冷凍機システム[J].三菱重工技報冷熱特集,2017,54(2):17- 22.

[13] HAMMOCK C W,SULLENS S.Final report:coupling of geothermal heat pumps with underground thermal energy storage:ESTCP Project EW-201135[R].Maco:AH&P Inc.,2017:1- 5.

[14] BILL L.Groundbreaking low-carbon geothermal project might emerge in prospect park[N/OL].MINNPOST.[2022-03-25].https://www.minnpost.com/cityscape/2021/03/groundbreaking-low-carbon-geothermal-project-might-emerge-in-prospect-park/.

[15] LUND J W,TOTH A N.Direct utilization of geothermal energy 2020 worldwide review[J].Geothermic,2021,90:101915.

[16] 徐伟.中国地源热泵发展研究报告[M].北京:中国建筑工业出版社,2018:233- 239.

[17] 赵利君.地源热泵业的“正负对决”[N].中国建设报,2014-10-14(暖通空调版).

[18] VDI.Thermische nutzung des untergrundes-unteriridische thermiscche energiespeicher:VDI 4640-Blatt 3[S].Düsseldorf:VDI Verein Deutscher Ingenieure,e.V.,2006:21.

[19] 邬小波.地下含水层储能和地下水源热泵系统中地下水回路与回灌技术现状[J].暖通空调,2004,34(1):19- 22.

[20] WU X B,BINK B,YU W P.Development of groundwater circuit for ATES and heat pump in China[C]//The Proceedings of 9th International Conference on Thermal Energy Storage.Warsaw,2003:95- 100.

[21] WU X B,CHEN M,OUYANG X N.Successful application of ATES/groundwater source heat pump in China[C]//Proceedings of 13th International Conference on Thermal Energy Storage.Beijing,2015:86.

[22] WIJSMAN A,HAVINGA J.The Groningen project:96 solar houses with seasonal heat storage in the soil[C] //Proceedings of 9th Biennial Congress of the International Solar Energy Society,“Intersol 85” Congress.Montreal,1986:818- 824.

[23] BLOEMENDAL M,MATHIJSSEN H.Bodemenergie[M].Gouda:SKB,2013:5- 15.

[24] 杨卫波.土壤源热泵技术及应用[M].北京:化学工业出版社,2015:170- 182.

[25] 龙惟定,白玮,范蕊,等.低碳城市的区域建筑能源规划[M].北京:中国建筑工业出版社,2015:115- 125.

[26] 何丽娟,汪集暘.“大地热流”等地热学重要术语的概念与应用[J].中国科学术语,2021,23(3):3- 9.

[27] 孙永福,李香玲.上海大地热流及其地质意义[J].上海地质,1986(2):16- 22.

[28] ROSEMA A,WU X B,BINK B,et al.China energy and water balance monitoring system:Sino-Dutch Cooperation Project Oret-Miliev 98-53[R].Delft:EARS,2004:31- 32.

[29] ROSEMA A,WU X B,BINK B,et al.Satellite water monitoring and flow forecasting system for the Yellow River basin:Sino-Dutch Cooperation Project ORET 02/09-CN00069[R].Delft:EARS,2008:33- 42.

[30] ALLEN R G,PEREIRA L S,RAES D,et al.Crop evapotranspiration,FAO irrigation and drainage:Paper No.56[R].Rome:FAO,1998:54.

[31] 孙永福.灌采条件下含水层能量计算[J].上海地质,1990(3):7- 14.

[32] SOWERS L,YORK K P,STILES L.Impact of thermal buildup on groundwater chemistry and aquifer microbes[C]//Proceedings of 10th International Conference on Thermal Energy Storage.New Jersey,2006:4A5.

[33] EPSTAINC,SOWERS L.The continued warming of the Stockton geothermal well field[C]//Proceedings of 10th International Conference on Thermal Energy Storage.New Jersey,2006:4A6.

[34] SIKB.Beoordelingsrichtlijn:ontwerp,realisatie,beheer en onderhoud onderhoud ondergrounds deel van bodemmenergiesystem,BRL SIKB 11000.versie 3[S].Gouda:SIKB,2019:12.

[35] 过增元.热流体学[M].北京:清华大学出版社,1992:294- 299.

[36] BLOEMENDL M,VAN WIJK A,HARTOG N,et al.Verwarming en koeling zonder warmtepomp met WKO-triplet[N/OL].H2O-Online.[2022-03-15].https://www.h2owaternetwerk.nl/vakartikelen/verwarming- en- koeling- zonder- warmtepomp- met- wko-triplet/.

[37] HARBAUGH A W.MODFLOW-2005,the U.S.geological survey modular ground-water model:the groundwater flow process[R].Reston:U.S Department of the Interior,U.S.Geological Survey,2005:1- 5.

[38] 陈敏,乔坚强,邬小波,等.地下水水源热泵技术在上海地区应用前景研究[R].上海:上海市地矿工程勘察院,2015:101- 104.

[39] SCHMIDT T,HELLSTROM G.Ground source cooling,working paper on usable tools and methods,soilcool/rekyl project[R].Stuttgart:EU Commission SAVE Programme & Nordic Energy Research,2005:14- 19.
Thermal analysis of underground thermal energy storage systems
Wu Xiaobo Ouyang Xinnan Guo Zengyuan
(CEEC Geothermal Co.,Ltd. Tsinghua University)
Abstract: The energy efficiency of underground thermal energy storage(UTES) system has been analysed from the fundamental laws of thermodynamics and heat transfer theory, in comparison with similar technology of ground-source heat pump(GSHP) system. The main characteristic of UTES is a passive cooling or heating system, which has high energy efficiency. The storage of high quality thermal energy could improve its application level of passive cooling or heating. While the suitable terminal system could relax the requirement of thermal energy quality from demand side, thus high thermal energy storage and utilization efficiency could be reached. The storage system with thermal stratification or different temperature zone design could maintain thermal energy quality at large extent and at the same time enhance the heat transfer.
Keywords: underground thermal energy storage (UTES); aquifer thermal energy storage (ATES); borehole thermal energy storage (BTES); ground-source heat pump (GSHP); energy efficiency; thermal analysis;
649 0 0
文字:     A-     A+     默认 取消