兰州环球港负刚度阻尼伸臂结构设计

引用文献:

刘桂然 张西辰 孙飞飞 雷振群 杨嘉琦 陈云. 兰州环球港负刚度阻尼伸臂结构设计[J]. 建筑结构,2023,48(01):65-70,128.

LIU Guiran ZHANG Xichen SUN Feifei LEI Zhenqun YANG Jiaqi CHEN Yun. Structural design of negative stiffness damped outrigger in Lanzhou Global Harbor[J]. Building Structure,2023,48(01):65-70,128.

作者:刘桂然 张西辰 孙飞飞 雷振群 杨嘉琦 陈云
单位:上海建筑设计研究院有限公司 同济大学土木工程学院
摘要:兰州环球港项目地处8度设防烈度区,超高层塔楼建筑顶部高度317m,结构高度248m。考虑刚性伸臂引起的结构竖向刚度突变及普通阻尼伸臂耗能较小,在超高层塔楼中创新性地采用了带负刚度阻尼伸臂的钢框架-混凝土核心筒结构体系。负刚度阻尼伸臂是在普通阻尼伸臂基础上增设负刚度装置而成,由于负刚度装置对运动的促进作用,阻尼器行程得到放大,其耗能效果也得到提高。分析结果表明,采用负刚度阻尼伸臂后,结构的附加阻尼比得到显著提升,并以很少的阻尼器用量获得更好的降低位移和加速度的性能。
关键词:兰州环球港;负刚度阻尼伸臂;黏滞阻尼器;超高层结构;减震;高烈度地区;
作者简介:刘桂然,硕士,高级工程师,一级注册结构工程师,主要从事复杂超高层结构及减隔震技术的设计与研究,Email:liugr@siadr.com.cn。
基金:“十四五”国家重点研发计划课题(2022YFC3801904)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 兰州环球港项目超限高层建筑工程抗震设防可行性论证报告[R].上海:上海建筑设计研究院有限公司,2021.
[2] 建筑抗震设计规范:GB 50011—2010[S].北京:中国建筑工业出版社,2010.
[3] 任重翠,肖从真,陈才华,等.黏滞阻尼伸臂桁架布置对超高层建筑抗震性能的影响[J].建筑科学,2021,37(11):113-123.
[4] 陈建兴,包联进,汪大绥.乌鲁木齐绿地中心黏滞阻尼器结构设计[J].建筑结构,2017,47(8):54-58.
[5] 丁洁民,虞终军,吴宏磊,等.中国国际丝路中心超高层结构设计与关键技术[J].建筑结构学报,2021,42(2):1-14.
[6] TAN P,FANG C J,ZHOU F L.Dynamic characteristics of a novel damped outrigger system[J].Earthquake Engineering and Engineering Vibration,2014,13(2):293-304.
[7] WANG M,NAGARAJAIAH S,SUN F F.Dynamic characteristics and responses of damped outrigger tall buildings using negative stiffness[J].Journal of Structural Engineering,2020,146(12):04020273.
[8] SUN F F,WANG M,NAGARAJAIAH S.Multi-objective optimal design and seismic performance of negative stiffness damped outrigger structures considering damping cost[J].Engineering Structures,2021,229:111615.
[9] 高层建筑混凝土结构技术规程:JGJ 3—2010[S].北京:中国建筑工业出版社,2011.
[10] 建筑消能减震技术规程:JGJ 297—2013[S].北京:建筑工业出版社,2013.
Structural design of negative stiffness damped outrigger in Lanzhou Global Harbor
LIU Guiran ZHANG Xichen SUN Feifei LEI Zhenqun YANG Jiaqi CHEN Yun
(Shanghai Institute of Architectural Design & Research Co., Ltd. College of Civil Engineering, Tongji University)
Abstract: Lanzhou Global Harbor project is located in the area with 8-degree fortification intensity. The top height of the super high-rise tower building is 317 meters, and the structural height is 248 meters. Considering the vertical stiffness sudden change of the structure and the small energy dissipation of conventional damped outrigger caused by rigid outrigger, the steel frame-concrete core tube structural system with negative stiffness damped outrigger is innovatively adopted in the super high-rise tower. The negative stiffness damped outrigger is formed by adding a negative stiffness device on the basis of the conventional damped outrigger. Because the negative stiffness device promotes the movement, the stroke of the damper is amplified, and its energy consumption effect is also improved. The analysis result show that the additional damping ratio of the structure is significantly improved after the negative stiffness damped outrigger is adopted, and the performance of reducing displacement and acceleration is better with a small amount of dampers.
Keywords: Lanzhou Global Harbor; negative stiffness damped outrigger; viscous damper; super high-rise structure; shock absorption; areas of high intensity
342 0 0
文字:     A-     A+     默认 取消