给水管网中硫醚类腥臭物质的研究进展
0 引言
近年来,饮用水中的嗅味问题越来越突出。根据Wang等
腥臭味物质主要来源于水源和给水管网。随着饮用水处理技术的不断发展,原水中的嗅味问题可以通过水厂的深度处理技术得到有效解决,如采用活性炭吸附或高级氧化技术
给水管网是连接给水厂和用户的重要环节,一旦在给水管网中产生了硫醚类的物质,龙头水会产生腥臭味,给供水安全带来严重影响。基于上述情况,针对给水管网中硫醚的研究工作就显得尤为重要。本文通过对给水管网中硫醚的来源、前体物、生成机理、影响因素以及控制去除的阐述,探讨未来如何消除饮用水的腥臭味等异嗅异味及改善龙头水口感的研究方向。
1 来源及前体物
1.1 常见的腥臭味物质
腥臭味是嗅味轮中嗅觉异味分类中的一种,其中包含了多种物质。目前,文献中报道较多并且存在于水环境中的此类嗅味物质有6种
表1 六种腥臭味物质的物理性质和分子式
Tab.1 Physical properties and structure of six kinds of swampy/septic odor compounds

注:(1)嗅阈值(Threshold odor number,TON):表示人能够感受到嗅味的最低物质浓度
1.2 给水管网中硫醚的来源及前体物
给水管网中的硫醚主要有两种来源:一是出厂水中残留有痕量的硫醚。由于原水中含有较多的藻类以及藻类释放物或者原水受到工业废水和生活污水的污染,使得原水中含有较多的含硫有机质,这些有机质会被微生物降解成硫醚
硫醚的前体物分别为以下两种:第一种是含硫有机物,包括半胱氨酸、甲硫氨酸

2 给水管网中硫醚的生成机理
2.1 化学甲基化
该机理是指甲基化试剂(例如碘代甲烷)与多硫化物(Sn2-)直接反应生成硫醚,如图1所示。Wajon和Heitz
2.2 微生物降解
含硫有机物在水中普遍存在,尤其是含硫氨基酸。这类物质在水中可以被微生物降解,进而产生硫醚,如图1所示。Ginzburg等利用分离得到的三种菌株(Acinetobacter lwoffii,Corynebacterium,Bacillus circulans),在好氧条件下进行了甲硫氨酸的降解试验,试验结果证明了3种细菌均能降解甲硫氨酸产生硫醚
2.3 生物甲基化
生物甲基化是指多硫化物(Sn2-)在甲基转移酶和甲基供体存在的情况下可以转化成硫醚
近年来,生物甲基化过程在污水管中得到了验证。Gu等
3 影响给水管网中硫醚存在的因素
影响给水管网中硫醚存在的因素可以分为两部分:微生物因素和非生物因素,其中非生物因素包括:光照、氧气、流速、管材、营养物质等。在很大程度上,非生物因素的改变会影响微生物因素的变化,最终导致给水管网中硫醚浓度的增加或减少。
3.1 微生物因素
给水管网中的微生物主要以生物膜的形式存在,黏附在管壁上,会造成饮用水出现异臭异味。关于硫醚类腥臭物质,某些微生物可以通过分解代谢含硫氨基酸得到或者硫酸盐还原菌在厌氧条件下将硫酸盐还原成硫化物,而后经过一系列反应产生硫醚。另外,硫醚的前体物之一———多硫化物的产生也被证明与微生物有关。多硫化物可通过微生物产生的单质硫与硫化物反应得到,或者直接由微生物产生
3.2 非生物因素
3.2.1 溶解氧和光照
溶解氧和光照影响着硫醚的产量和降解速率。卢信等
3.2.2 流速
流速的影响可以概括成两个方面:(1)流速的大小影响水流剪切力,从而影响生物膜的结构。有研究证明,在低流速条件下,管壁生物膜结构松散、孔隙较多;在高流速条件下,生物膜厚度变薄但密度更大
3.2.3 其他因素
除了上述提到的因素,营养物质、管材以及金属离子等因素也在文献中有所提及。Heitz
4 去除与控制方法
针对给水管网中硫醚的来源途径,总结其去除与控制方法主要集中在以下两个方面。
4.1 给水厂的去除技术
给水厂实际用于去除饮用水中致嗅物质的技术主要有吸附技术和氧化技术。在吸附技术中,活性炭是一类常用的吸附剂,可以有效降低水中硫醚类物质的浓度。Zhang等
硫醚、硫醇类物质的去除宜采用氧化法
随着研究的不断深入,给水厂的去除技术得以完善。但是针对不同水厂的实际情况,出厂水中含有的硫醚存在一定差异。这种差异表现在一些水厂的出厂水中检测不到硫醚类物质
4.2 给水管网中硫醚的控制方法
出厂水进入给水网管后,由于微生物的作用或者发生某些化学反应,导致自来水中硫醚浓度升高,出现腥臭味。针对给水管网中控制硫醚形成的方法总结为以下两种:(1)投加氯。给水管网中的饮用水之所以会产生异味,微生物是其中较为关键的因素之一。但是随着研究的深入,学者发现即使在高浓度氯的情况下,给水管网中仍然可以形成生物膜,这反映了微生物对氯的耐受性
5 结论与展望
(1)给水管网中的硫醚是一类潜在的嗅味源,易导致自来水出现腥臭味,因此应给予足够的重视。(2)给水管网中硫醚的前体物主要有两类:第一类是含硫有机质,来源于藻类及其释放物或者工业废水和生活污水;第二类是多硫化物,这类物质可以通过单质硫与硫化物反应得到。(3)硫醚的生成机理主要包括化学甲基化、生物降解以及生物甲基化。但是鉴于文献中提及到的实验方案的特点,给水管网中硫醚的确切生成机理还有待进一步研究证明;(4)微生物是影响给水管网中硫醚存在的一个关键因素。同时一些非生物因素,如光照、溶解氧、流速、温度等,均能产生一定影响。微生物因素和非生物因素是密切相关的,在很大程度上,非生物因素的改变会造成微生物因素的变化。(5)原水中硫醚类腥臭味物质可以通过深度处理工艺得到有效去除。针对给水管网中的腥臭味,目前可以通过冲洗管道、投加氯等方式进行去除,但是这些方法针对性较弱,并且在成本和安全性方面还有待商榷。
因此,未来的研究工作可以从以下几个方面展开:(1)通过模拟实际给水管网,研究硫醚在管网中生成的影响因素(如管材、管龄、流速等)及内在机制,进而建立合适的模型来预测和控制管网中硫醚的形成;(2)微生物在硫醚形成的过程中可能有至关重要的作用,因此可以研究硫醚形成过程中微生物群落的变化,探索两者之间是否存在未知的相互作用;(3)目前关于给水管网中腥臭味的控制方法比较缺乏,因此未来的研究可以在此方面给予关注,研究出高效、安全、经济的控制方法。
[2]于建伟,李宗来,曹楠,等.无锡市饮用水嗅味突发事件致嗅原因及潜在问题分析[J].环境科学学报,2007(11):1771-1777.
[3]Lu X,Fan C X,He W,et al.Sulfur-containing amino acid methionine as the precursor of volatile organic sulfur compounds in algea-induced black bloom[J].Journal of Environmental Sciences,2013,25(1):33-43.
[4]Scott B A,Pepper I L.Water distribution systems as living ecosystems:Impact on taste and odor[J].Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances&Environmental Engineering,2010,45(7):890-900.
[5]李勇,张晓健,陈超.我国饮用水中嗅味问题及其研究进展[J].环境科学,2009,30(2):583-588.
[6]成银,高乃云,张可佳.硫醚类嗅味物质的检测和去除技术研究进展[J].四川环境,2011,30(2):119-124.
[7]焦洁,陆纳新,王海湧,等.太湖原水藻类代谢产物中嗅味物质的去除技术研究[J].中国给水排水,2016,32(11):64-67.
[8]Wajon J E,Kavanagh B V,Kagi R I,et al.Controlling Swampy Odors in Drinking-Water[J].Journal American Water Works Association,1988,80(6):77-83.
[9]Wajon J E,Heitz A.The Reactions of Some Sulfur-Compounds in Water-Supplies in Perth,Australia[J].Water Science and Technology,1995,31(11):87-92.
[10]Heitz A,Kagi R I,Alexander R.Polysulfide sulfur in pipewall biofilms:its role in the formation of swampy odour in distribution systems[J].Water Science and Technology,2000,41(4-5):271-278.
[11]Zhou X Y,Zhang K J,Zhang T Q,et al.An ignored and potential source of taste and odor (T&O)issues-biofilms in drinking water distribution system (DWDS)[J].Applied Microbiology and Biotechnology,2017,101(9):3537-3550.
[12]Kristiana I,Heitz A,Joll C,et al.Analysis of polysulfides in drinking water distribution systems using headspace solidphase microextraction and gas chromatography-mass spectrometry[J].Journal of Chromatography A,2010,1217(38):5995-6001.
[13]Guadayol M,Cortina M,Guadayol J M,et al.Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters[J].Water Research,2016,92:149-155.
[14]Rappert S,Muller R.Microbial degradation of selected odorous substances[J].Waste Management,2005,25(9):940-954.
[15]Guo Q Y,Yu J W,Yang K,et al.Identification of complex septic odorants in Huangpu River source water by combining the data from gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography using retention indices[J].Science of the Total Environment,2016,556:36-44.
[16]孙丽丽.嘉兴地区异嗅异味识别及庚醛控制技术的研究[D].浙江:浙江大学,2015:1-6.
[17]于杨,黄廷林,史建超,等.水源水库致嗅类挥发性有机硫化物时空变化特性[J].环境工程学报,2016,10(10):5709-5714.
[18]黄鹤勇,刘宪圣,许晓光,等.太湖西岸沉积物中典型挥发性硫化物的分布特征研究[J].生态科学,2018,37(4):16-23.
[19]Sun D L,Yu J W,Yang M,et al.Occurrence of odor problems in drinking water of major cities across China[J].Frontiers of Environmental Science&Engineering,2014,8(3):411-416.
[20]Franzmann P D,Heitz A,Zappia L R,et al.The formation of malodorous dimethyl oligosulphides in treated groundwater:The role of biofilms and potential precursors[J].Water Research,2001,35(7):1730-1738.
[21]Ginzburg B,Dor I,Chalifa I,et al.Formation of dimethyloligosulfides in Lake Kinneret:Biogenic formation of inorganic oligosulfide intermediates under oxic conditions[J].Environmental Science&Technology,1999,33(4):571-579.
[22]Liang S,Zhang L,Jiang F.Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage[J].Water Research,2016,100:421-428.
[23]Gun J,Goifman A,Shkrob I,et al.Formation of polysulfides in an oxygen rich freshwater lake and their role in the production of volatile sulfur compounds in aquatic systems[J].Environmental Science&Technology,2000,34(22):4741-4746.
[24]Findlay A J.Microbial impact on polysulfide dynamics in the environment[J].FEMS Microbiol Lett,2016,363(11).
[25]Wajon J E,Wilmot P D.Sulfur compounds causing odour in water[J].Chem Aust,1992,59:406-408.
[26]Qiu W,Li W,He J,et al.Variations regularity of microorganisms and corrosion of cast iron in water distribution system[J].J Environ Sci(China),2018,74:177-185.
[27]尹朗,赵丹,张素佳,等.饮用水管网生物膜细菌群落特征及其对腐蚀的影响[J].环境工程学报,2016,10(10):5453-5458.
[28]Sun R R,Zhang L,Zhang Z F,et al.Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter[J].Water Research,2018,131:239-245.
[29]Drotar A,Burton G A,Tavernier J E,et al.Widespread Occurrence of Bacterial Thiol Methyltransferases and the Biogenic Emission of Methylated Sulfur Gases[J].Applied and Environmental Microbiology,1987,53(7):1626-1631.
[30]Gu T F,Tan P Y,Zhou Y C,et al.Characteristics and mechanism of dimethyl trisulfide formation during sulfide control in sewer by adding various oxidants[J].Science of the Total Environment,2019,673:719-725.
[31]卢信,刘成,尹洪斌,等.生源性湖泛水体主要含硫致臭物及其产生机制[J].湖泊科学,2015,27(4):583-590.
[32]Buchshtav T,Kamyshny A.Decomposition of dimethyl polysulfides under solar irradiation in oxic aqueous solutions[J].Environmental Chemistry,2020.
[33]Liu S,Gunawan C,Barraud N,et al.Understanding,Monitoring,and Controlling Biofilm Growth in Drinking Water Distribution Systems[J].Environmental Science&Technology,2016,50(17):8954-8976.
[34]Liang Z S,Sun J L,Chau H K M,et al.Experimental and modelling evaluations of sulfide formation in a mega-sized deep tunnel sewer system and implications for sewer management[J].Environment International,2019,131.
[35]Zhang K J,Gao N Y,Deng Y,et al.Granular activated carbon(GAC)adsorption of two algal odorants,dimethyl trisulfide and beta-cyclocitral[J].Desalination,2011,266(1-3):231-237.
[36]Huang X,Lu Q,Hao H T,et al.Evaluation of the treatability of various odor compounds by powdered activated carbon[J].Water Research,2019,156:414-424.
[37]Vega E,Sanchez-Polo M,Gonzalez-Olmos R,et al.Adsorption of odorous sulfur compounds onto activated carbons modified by gamma irradiation[J].Journal of Colloid and Interface Science,2015,457:78-85.
[38]Liu Q,Ke M,Yu P,et al.High performance removal of methyl mercaptan on metal modified activated carbon[J].Korean Journal of Chemical Engineering,2018,35 (1):137-146.
[39]Jana S,Sarkar U.Alkaline functionalization of granular activated carbon for the removal of Volatile Organo Sulphur Compounds(VOSCs)generated in Sewage Treatment Plants[J].Journal of Environmental Chemical Engineering,2018,6(2):3510-3519.
[40]Huang X,Shi B Y,Hao H T,et al.Identifying the function of activated carbon surface chemical properties in the removability of two common odor compounds[J].Water Research,2020,178.
[41]马晓雁,张泽华,王红宇,等.高铁酸钾对水中藻类及其次生嗅味污染物二甲基三硫醚同步去除研究[J].环境科学,2013,34(5):1767-1772.
[42]Wang Y J,Yu J W,Zhang D,et al.Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone[J].Journal of Environmental Sciences,2014,26(3):550-554.
[43]Chen C,Shi X L,Yang Z,et al.An integrated method for controlling the offensive odor and suspended matter originating from algae-induced black blooms[J].Chemosphere,2019,221:526-532.
[44]Wang C M,Yu J W,Guo Q Y,et al.Simultaneous quantification of fifty-one odor-causing compounds in drinking water using gas chromatography-triple quadrupole tandem mass spectrometry[J].Journal of Environmental Sciences,2019,79:100-110.
[45]王占生.微污染水源饮用水处理[M].北京:中国建筑工业出版社,2016.
[46]Lehtola M J,Nissinen T K,Miettinen I T,et al.Removal of soft deposits from the distribution system improves the drinking water quality[J].Water Research,2004,38 (3):601-610.