变流量空气源热泵集中供暖系统水泵及末端控制方法研究

作者:武春生 魏文哲 李天普 倪龙
单位:广州地铁设计研究院股份有限公司 哈尔滨工业大学 寒地城乡人居环境科学与技术工业和信息化部重点实验室 北京工业大学绿色建筑环境与节能技术北京市重点实验室 山东福德新能源设备有限公司
摘要:本文建立了变流量空气源热泵建筑供暖的数学模型,利用该模型研究了不同水泵控制方式下空气源热泵系统的性能。结果表明:为了使热泵机组保持较高的性能,其最小经济流量为额定流量的30%;3种控制方式中,供回水干管压差控制水泵功耗最大,最不利末端支路压差控制水泵功耗最小;相比于供回水干管压差控制,最不利末端支路压差控制水泵可节能0~31.84%;3种控制方式中,温差控制系统总功耗始终最大,最不利末端压差控制最小,它们的差值平均值在高负荷率下达到6.20%;压差控制和温差控制均可满足建筑供暖需要,但压差控制室内温度波动更小,适合用于对室内温度要求较高的场所。
关键词:空气源热泵水泵变流量系统控制策略供热末端压差控制温差控制
作者简介:武春生,男,1994年生,硕士研究生,助理工程师;*倪龙,150090哈尔滨市南岗区黄河路73号哈工大寒地楼423,E-mail:nilonggn@163.com;
基金:国家重点研发计划项目(编号:2021YFE0116100);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 周超辉,傅旭辉,倪龙,等.北京某教学楼空气源热泵供暖系统现场实验[J].制冷学报,2018,39(5):29- 35.

[2] 武斌,田琦,董旭,等.太阳能+空气源热泵热水机组系统数学模型构建与分析[J].暖通空调,2019,49(11):125- 131.

[3] PEFFER T,PRITONI M,MEIER A,et al.How people use thermostats in homes:a review [J].Building and environment,2011,46 (12):2529- 2541.

[4] 杜涛,黄珂,周志华,等.中国北方城镇居住建筑供暖能耗现状与节能潜力分析[J].暖通空调,2016,46(10):75- 81.

[5] 宋小曼,杨丽,王伟洁.空气源热泵供暖系统用户侧变流量运行特性[J].煤气与热力,2018,38(5):19- 23.

[6] ZHOU C,NI L,LI J,et al.Air-source heat pump heating system with a new temperature and hydraulic-balance control strategy:a field experiment in a teaching building [J].Renewable energy,2019,141:148- 161.

[7] ZHOU C,NI L,WANG J,et al.Investigation on the performance of ASHP heating system using frequency-conversion technique based on a temperature and hydraulic-balance control strategy [J].Renewable energy,2020,147:141- 154.

[8] 赵亚伟.空调水系统的优化分析与案例剖析[M].北京:中国建筑工业出版社,2015:140- 155.

[9] LI W.Simplified steady-state modeling for variable speed compressor [J].Applied thermal engineering,2013,50:318- 326.

[10] BERNIER M A,BOURRET B.Pumping energy and variable frequency driver[J].ASHRAE journal,1999,41(12):37- 40.

[11] 吴璇.重庆地区居住建筑毛细管网地板辐射供暖性能和运行模式研究[D].重庆:重庆大学,2018:44- 48.

[12] NIE Y,ZHANG P,CAI G,et al.Unified Smith predictor compensation and optimal damping control for time-delay power system [J].International journal of electrical power and energy systems,2020,117:105670.

[13] JIA L,ZHAO X.An improved particle swarm optimization (PSO) optimized integral separation PID and its application on central position control system [J].IEEE sensors journal,2019,19:7064- 7071.
Research on water pump and terminal control methods of centralized heating systems using variable-flow air-source heat pumps
Wu Chunsheng Wei Wenzhe Li Tianpu Ni Long
(Guangzhou Metro Design & Research Institute Co., Ltd. Harbin Institute of Technology Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology Shandong Ford New Energy Equipment Co., Ltd.)
Abstract: In this paper, a mathematical model of the variable-flow air-source heat pump(ASHP) for building heating is established to study the ASHP system performance under different water pump control modes. The results show that in order to maintain the high performance of the heat pump unit, the minimum economic flow rate is 30% of the rated flow rate. Among the three control modes, the power consumption of the water pump controlled by the pressure difference of the main supply and return water pipe is the highest, and that of the most disadvantageous end branch is the lowest. Compared with the pressure difference control of the main supply and return water pipe, the most disadvantageous end branch pressure difference control pump can save energy by 0-31.84%. Among the three control modes, the total power consumption of the temperature difference control system is always the largest, the pressure difference control at the most disadvantageous end is the lowest, and the average value of their difference reaches 6.20% under the high load rate. Both pressure difference control and temperature difference control can meet the heating needs of buildings, but the room temperature fluctuation of the pressure difference control is smaller, so it is suitable for places with higher room temperature requirements.
Keywords: air-source heat pump; water pump; variable-flow system; control strategy; heating terminal; pressure difference control; temperature difference control;
796 0 0
文字:     A-     A+     默认 取消