基于ARIMA-SVM模型的博物馆经书库TVOC浓度预测
摘要:为满足文物预防性保护需求,分别用ARIMA和ARIMA-SVM模型对某博物馆经书库TVOC浓度进行了预测研究。结果表明:ARIMA-SVM模型的精度高,能够较好地预测TVOC浓度序列趋势;基于ARIMA-SVM组合预测方法的平均绝对误差(MAF)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别为0.001 5×10-6、0.000 5和0.005 5×10-6,印证了该模型预测博物馆TVOC浓度的可行性,可以为经书库环境调控提供科学依据。
关键词:博物馆经书库预防性保护TVOC浓度ARIMA-SVM模型时间序列预测模型评价
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] KRUPIÑSKA B,VAN GRIEKEN R,DE WAEL K.Air quality monitoring in a museum for preventive conservation:results of a three-year study in the Plantin-Moretus Museum in Antwerp,Belgium[J].Microchemical journal,2013,110:350- 360.
[2] ASCIONE F,MINICHIELLO F.Microclimatic control in the museum environment:air diffusion performance[J].International journal of refrigeration,2010,33(4):806- 814.
[3] 国家图书馆.图书馆古籍特藏书库基本要求:WH/T 24—2006[S].北京:北京图书出版社,2007:1- 3.
[4] 上海博物馆.馆藏文物保存环境质量检测技术规范:WW/T 0016—2008[S].北京:中国标准出版社,2008:1- 35.
[5] 上海博物馆.文物展柜基本技术要求及检测:GB/T 36111—2018[S].北京:中国标准出版社,2018:1- 8.
[6] 张惠敏,陈凤娜,郑磊.办公建筑装修工程室内空气质量全过程控制策略及案例分析[J].绿色建筑,2020,12(4):89- 92.
[7] CHEN S,MIHARA K,WEN J.Time series prediction of CO2,TVOC and HCHO based on machine learning at different sampling points[J].Building and environment,2018,146:238- 246.
[8] HIKICHI S E,SALGADO E,BEIJO L A.Forecasting number of ISO 14001 certifications in the Americas using ARIMA models[J].Journal of cleaner production,2017,147:242- 253.
[9] 刘春红,杨亮,邓河,等.基于ARIMA和BP神经网络的猪舍氨气浓度预测[J].中国环境科学,2019,39(6):2320- 2327.
[10] 乔风娟,郭红利,李伟,等.基于SVM的深度学习分类研究综述[J].齐鲁工业大学学报,2018,32(5):39- 44.
[11] 杨敏,丁剑,王炜.基于ARIMA-SVM模型的快速公交停站时间组合预测方法[J].东南大学学报(自然科学版),2016,46(3):651- 656.
[12] 田中大,高宪文,石彤.用于混沌时间序列预测的组合核函数最小二乘支持向量机[J].物理学报,2014,63(16):70- 80.
[13] 王平,张红,秦作栋,等.基于wavelet-SVM的PM10浓度时序数据预测[J].环境科学,2017,38(8):3153- 3161.
[14] 刘杰,杨鹏,吕文生,等.模糊时序与支持向量机建模相结合的PM2.5质量浓度预测[J].北京科技大学学报,2014,36(12):1694- 1702.
[2] ASCIONE F,MINICHIELLO F.Microclimatic control in the museum environment:air diffusion performance[J].International journal of refrigeration,2010,33(4):806- 814.
[3] 国家图书馆.图书馆古籍特藏书库基本要求:WH/T 24—2006[S].北京:北京图书出版社,2007:1- 3.
[4] 上海博物馆.馆藏文物保存环境质量检测技术规范:WW/T 0016—2008[S].北京:中国标准出版社,2008:1- 35.
[5] 上海博物馆.文物展柜基本技术要求及检测:GB/T 36111—2018[S].北京:中国标准出版社,2018:1- 8.
[6] 张惠敏,陈凤娜,郑磊.办公建筑装修工程室内空气质量全过程控制策略及案例分析[J].绿色建筑,2020,12(4):89- 92.
[7] CHEN S,MIHARA K,WEN J.Time series prediction of CO2,TVOC and HCHO based on machine learning at different sampling points[J].Building and environment,2018,146:238- 246.
[8] HIKICHI S E,SALGADO E,BEIJO L A.Forecasting number of ISO 14001 certifications in the Americas using ARIMA models[J].Journal of cleaner production,2017,147:242- 253.
[9] 刘春红,杨亮,邓河,等.基于ARIMA和BP神经网络的猪舍氨气浓度预测[J].中国环境科学,2019,39(6):2320- 2327.
[10] 乔风娟,郭红利,李伟,等.基于SVM的深度学习分类研究综述[J].齐鲁工业大学学报,2018,32(5):39- 44.
[11] 杨敏,丁剑,王炜.基于ARIMA-SVM模型的快速公交停站时间组合预测方法[J].东南大学学报(自然科学版),2016,46(3):651- 656.
[12] 田中大,高宪文,石彤.用于混沌时间序列预测的组合核函数最小二乘支持向量机[J].物理学报,2014,63(16):70- 80.
[13] 王平,张红,秦作栋,等.基于wavelet-SVM的PM10浓度时序数据预测[J].环境科学,2017,38(8):3153- 3161.
[14] 刘杰,杨鹏,吕文生,等.模糊时序与支持向量机建模相结合的PM2.5质量浓度预测[J].北京科技大学学报,2014,36(12):1694- 1702.
Prediction of TVOC concentration in museum scripture libraries based on ARIMA-SVM model
Abstract: In order to meet the need of preventive protection of cultural relics, the TVOC concentration of a museum's scripture library is predicted and studied by the ARIMA model and the ARIMA-SVM model, respectively. The prediction results show that the ARIMA-SVM model has high accuracy and can better predict the trend of TVOC concentration series. The MAE, MAPE and RMSE based on the ARIMA-SVM combined forecasting method are 0.001 5×10-6, 0.000 5 and 0.005 5×10-6, respectively. This confirms the feasibility of the ARIMA-SVM model in the prediction of the TVOC concentration of the museum, which can provide a scientific basis for the environmental regulation of the scripture library.
Keywords: museum; scripture library; preventive protection; TVOC concentration; ARIMA-SVM combined model; time series forecasting; model evaluation;
678
0
0