恒温型自驱动集热器建模与仿真分析

作者:胡建军 阮煜童 张寅 王丽莹
单位:燕山大学河北省建筑低碳清洁供热技术创新中心 燕山大学河北省土木工程绿色建造与智能运维重点实验室 秦皇岛职业技术学院
摘要:提出了一种恒温型自驱动太阳能空气集热器(CTSD-SAC),通过TRNSYS16.1进行建模和仿真研究。仿真基于4组秦皇岛市夏季典型气象参数进行,采用控制变量单因素分析方法,讨论了不同设定温度工况下CTSD-SAC的运行特性,分析了内置PV板(太阳能电池板)面积对CTSD-SAC性能的影响。结果表明:CTSD-SAC的流量降幅与设定温度呈非线性关系;太阳辐照度与室外温度均影响CTSD-SAC的出口流量,且室外温度的影响更显著,但是对系统的光热光电效率影响不明显,体现了CTSD-SAC运行性能的稳定性。分析表明PV板面积每增加0.1 m2,光热效率降低10%。仿真通过PID控制实现了集热器出口温度稳态误差小于2.11%,上升时间短于15 min。
关键词:太阳能集热器温度控制单因素分析PID控制光热效率光电效率自驱动
作者简介:胡建军,男,1982年生,博士研究生,教授,066004秦皇岛市海港区河北大街西段438号,E-mail:kewei729@163.com;
基金:河北省自然科学基金项目(编号:E2020203028);中央引导地方科技发展资金项目(编号:226Z1902G);河北省大学生创新创业训练计划项目(编号:S201910216047);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 中华人民共和国统计局.年度数据[DB/OL].[2020-12-25].https://data.stats.gov.cn/easyquery.htm?cn=C01.

[2] SAXENA A,VARUN,EL-SEBAII A A.A thermodynamic review of solar air heaters[J].Renewable and sustainable energy reviews,2015,43:863- 890.

[3] TIAN Z,PERERS B,FURBO S,et al.Thermo-economic optimization of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series[J].Energy conversion and management,2018,165:92- 101.

[4] HAO W,LU Y,LAI Y,et al.Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products[J].Renewable energy,2018,127:685- 696.

[5] KABEEL A E,ABDEKGAIED M,FEDDAOUI M.Hybrid system of an indirect evaporative air cooler and HDH desalination system assisted by solar energy for remote areas[J].Desalination,2018,439:162- 167.

[6] SIDDIQUI F R,ELMINSHAWY N A S,ADDAS M F.Design and performance improvement of a solar desalination system by using solar air heater.Experimental and theoretical approach[J].Desalination,2016,399:78- 87.

[7] SCHINDWOLF R.Fluid temperature control for parabolic trough solar collectors[R/OL].[2020-12-25].http//www.osti.gov/biblio/5226962.

[8] SCHINDWOLF R.Frequency response analysis of fluid control system for parabolic trough solar collectors[J].Journal of solar energy engineering,1981,103(4):1- 27.

[9] WRIGHT J D,MASTERSON M.Temperature control of line-focus solar collectors[J].Journal of solar energy engineering,1983,105:194- 199.

[10] SINHA S,TIWARI G N.Theoretical evaluation of commercial solar hot water system for constant delivery temperature[J].Energy conversion and management,1992,33(2):125- 133.

[11] TIWARI A,DUBEY S,SANDHU G S,et al.Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes[J].Applied energy,2009,86:2592- 2597.

[12] MISHRA R K,TIWARI G N.Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode[J].Solar energy,2013,90:58- 67.

[13] RASHMI M,TIWARI A,TIWARI G N,et al.Performance evaluation of a semi-transparent photovoltaic thermal (SPVT) inverted absorber flat plate collector (IAFPC) for constant collection temperature (CCT) mode[J].Solar energy,2019,186:382- 391.

[14] SADASUKE I,MINORU K,NAOKATSU M.Flow control and unsteady-state analysis on thermal performance of solar air collectors[J].Journal of solar energy engineering,2006,128:354- 359.

[15] CEYLAN I.Energy and exergy analyses of a temperature controlled solar water heater[J].Energy and buildings,2012,47:630- 635.

[16] LIMA D M,NORMEY-RICO J E,SANTOS T L M.Temperature control in a solar collector field using filtered dynamic matrix control[J].ISA transaction,2016,62:39- 49.

[17] BUZÁS J,KICSINY R.Transfer functions of solar collectors for dynamical analysis and control design[J].Renewable energy,2014,68:146- 155.

[18] TILAHUN F B,BHANDARI R,MAMO M.Design optimization and control approach for a solar-augmented industrial heating[J].Energy,2019,179:186- 198.

[19] HU J,ZHANG G,ZHU Q,et al.A self-driven mechanical ventilated solar air collector.Design and experimental study[J].Energy,2019,189:116287.

[20] REMUND J,MÜLLER S,KUNZ S,et al.Meteonorm handbook part I:software[Z/CD].Bern:Meteotest,2014:12- 14.

[21] KLEIN S A,BECKMAN W A,MITCHELL J W,et al.A transient system simulation program[Z/CD].Madison:University of Wisconsin-Madison,2007:47- 49.
Modelling and simulation analysis of a constant temperature self-driven collector
Hu Jianjun Ruan Yutong Zhang Yin Wang Liying
(Hebei Province Low-Carbon and Clean Building Heating Technology Innovation Center, Yansan University Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province, Yanshan University Qinhuangdao Vocational and Technical College)
Abstract: In this paper, a constant temperature self-driven solar air collector(CTSD-SAC) is proposed, which is modeled and simulated by TRNSYS16.1. The simulation is based on four groups of typical meteorological parameters in Qinhuangdao city in summer. Using the single-factor analysis method of control variables, the operation characteristics of CTSD-SAC under different set temperature conditions are discussed, and the influence of the built-in PV board(solar panel) area on the performance of CTSD-SAC is analysed. The results show that there is a non-linear relationship between the flow rate decrease of CTSD-SAC and the set temperature. Both solar irradiance and outdoor temperature affect the outlet flow of CTSD-SAC, and the influence of outdoor temperature is more significant, but the effect on the photothermal photoelectrical efficiency of the system is not obvious, which reflects the stability of CTSD-SAC performance. The analysis shows that when the PV board area increases by 0.1 m2, the photothermal efficiency decreases by 10%. Through PID control, the steady-state error of collector outlet temperature is less than 2.11%, and the rising time is less than 15 min.
Keywords: solar collector; temperature control; single factor analysis; PID control; photothermal efficiency; photoelectrical efficiency; self-driven;
671 0 0
文字:     A-     A+     默认 取消