恒温型自驱动集热器建模与仿真分析
摘要:提出了一种恒温型自驱动太阳能空气集热器(CTSD-SAC),通过TRNSYS16.1进行建模和仿真研究。仿真基于4组秦皇岛市夏季典型气象参数进行,采用控制变量单因素分析方法,讨论了不同设定温度工况下CTSD-SAC的运行特性,分析了内置PV板(太阳能电池板)面积对CTSD-SAC性能的影响。结果表明:CTSD-SAC的流量降幅与设定温度呈非线性关系;太阳辐照度与室外温度均影响CTSD-SAC的出口流量,且室外温度的影响更显著,但是对系统的光热光电效率影响不明显,体现了CTSD-SAC运行性能的稳定性。分析表明PV板面积每增加0.1 m2,光热效率降低10%。仿真通过PID控制实现了集热器出口温度稳态误差小于2.11%,上升时间短于15 min。
关键词:太阳能集热器温度控制单因素分析PID控制光热效率光电效率自驱动
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] 中华人民共和国统计局.年度数据[DB/OL].[2020-12-25].https://data.stats.gov.cn/easyquery.htm?cn=C01.
[2] SAXENA A,VARUN,EL-SEBAII A A.A thermodynamic review of solar air heaters[J].Renewable and sustainable energy reviews,2015,43:863- 890.
[3] TIAN Z,PERERS B,FURBO S,et al.Thermo-economic optimization of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series[J].Energy conversion and management,2018,165:92- 101.
[4] HAO W,LU Y,LAI Y,et al.Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products[J].Renewable energy,2018,127:685- 696.
[5] KABEEL A E,ABDEKGAIED M,FEDDAOUI M.Hybrid system of an indirect evaporative air cooler and HDH desalination system assisted by solar energy for remote areas[J].Desalination,2018,439:162- 167.
[6] SIDDIQUI F R,ELMINSHAWY N A S,ADDAS M F.Design and performance improvement of a solar desalination system by using solar air heater.Experimental and theoretical approach[J].Desalination,2016,399:78- 87.
[7] SCHINDWOLF R.Fluid temperature control for parabolic trough solar collectors[R/OL].[2020-12-25].http//www.osti.gov/biblio/5226962.
[8] SCHINDWOLF R.Frequency response analysis of fluid control system for parabolic trough solar collectors[J].Journal of solar energy engineering,1981,103(4):1- 27.
[9] WRIGHT J D,MASTERSON M.Temperature control of line-focus solar collectors[J].Journal of solar energy engineering,1983,105:194- 199.
[10] SINHA S,TIWARI G N.Theoretical evaluation of commercial solar hot water system for constant delivery temperature[J].Energy conversion and management,1992,33(2):125- 133.
[11] TIWARI A,DUBEY S,SANDHU G S,et al.Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes[J].Applied energy,2009,86:2592- 2597.
[12] MISHRA R K,TIWARI G N.Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode[J].Solar energy,2013,90:58- 67.
[13] RASHMI M,TIWARI A,TIWARI G N,et al.Performance evaluation of a semi-transparent photovoltaic thermal (SPVT) inverted absorber flat plate collector (IAFPC) for constant collection temperature (CCT) mode[J].Solar energy,2019,186:382- 391.
[14] SADASUKE I,MINORU K,NAOKATSU M.Flow control and unsteady-state analysis on thermal performance of solar air collectors[J].Journal of solar energy engineering,2006,128:354- 359.
[15] CEYLAN I.Energy and exergy analyses of a temperature controlled solar water heater[J].Energy and buildings,2012,47:630- 635.
[16] LIMA D M,NORMEY-RICO J E,SANTOS T L M.Temperature control in a solar collector field using filtered dynamic matrix control[J].ISA transaction,2016,62:39- 49.
[17] BUZÁS J,KICSINY R.Transfer functions of solar collectors for dynamical analysis and control design[J].Renewable energy,2014,68:146- 155.
[18] TILAHUN F B,BHANDARI R,MAMO M.Design optimization and control approach for a solar-augmented industrial heating[J].Energy,2019,179:186- 198.
[19] HU J,ZHANG G,ZHU Q,et al.A self-driven mechanical ventilated solar air collector.Design and experimental study[J].Energy,2019,189:116287.
[20] REMUND J,MÜLLER S,KUNZ S,et al.Meteonorm handbook part I:software[Z/CD].Bern:Meteotest,2014:12- 14.
[21] KLEIN S A,BECKMAN W A,MITCHELL J W,et al.A transient system simulation program[Z/CD].Madison:University of Wisconsin-Madison,2007:47- 49.
[2] SAXENA A,VARUN,EL-SEBAII A A.A thermodynamic review of solar air heaters[J].Renewable and sustainable energy reviews,2015,43:863- 890.
[3] TIAN Z,PERERS B,FURBO S,et al.Thermo-economic optimization of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series[J].Energy conversion and management,2018,165:92- 101.
[4] HAO W,LU Y,LAI Y,et al.Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products[J].Renewable energy,2018,127:685- 696.
[5] KABEEL A E,ABDEKGAIED M,FEDDAOUI M.Hybrid system of an indirect evaporative air cooler and HDH desalination system assisted by solar energy for remote areas[J].Desalination,2018,439:162- 167.
[6] SIDDIQUI F R,ELMINSHAWY N A S,ADDAS M F.Design and performance improvement of a solar desalination system by using solar air heater.Experimental and theoretical approach[J].Desalination,2016,399:78- 87.
[7] SCHINDWOLF R.Fluid temperature control for parabolic trough solar collectors[R/OL].[2020-12-25].http//www.osti.gov/biblio/5226962.
[8] SCHINDWOLF R.Frequency response analysis of fluid control system for parabolic trough solar collectors[J].Journal of solar energy engineering,1981,103(4):1- 27.
[9] WRIGHT J D,MASTERSON M.Temperature control of line-focus solar collectors[J].Journal of solar energy engineering,1983,105:194- 199.
[10] SINHA S,TIWARI G N.Theoretical evaluation of commercial solar hot water system for constant delivery temperature[J].Energy conversion and management,1992,33(2):125- 133.
[11] TIWARI A,DUBEY S,SANDHU G S,et al.Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes[J].Applied energy,2009,86:2592- 2597.
[12] MISHRA R K,TIWARI G N.Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode[J].Solar energy,2013,90:58- 67.
[13] RASHMI M,TIWARI A,TIWARI G N,et al.Performance evaluation of a semi-transparent photovoltaic thermal (SPVT) inverted absorber flat plate collector (IAFPC) for constant collection temperature (CCT) mode[J].Solar energy,2019,186:382- 391.
[14] SADASUKE I,MINORU K,NAOKATSU M.Flow control and unsteady-state analysis on thermal performance of solar air collectors[J].Journal of solar energy engineering,2006,128:354- 359.
[15] CEYLAN I.Energy and exergy analyses of a temperature controlled solar water heater[J].Energy and buildings,2012,47:630- 635.
[16] LIMA D M,NORMEY-RICO J E,SANTOS T L M.Temperature control in a solar collector field using filtered dynamic matrix control[J].ISA transaction,2016,62:39- 49.
[17] BUZÁS J,KICSINY R.Transfer functions of solar collectors for dynamical analysis and control design[J].Renewable energy,2014,68:146- 155.
[18] TILAHUN F B,BHANDARI R,MAMO M.Design optimization and control approach for a solar-augmented industrial heating[J].Energy,2019,179:186- 198.
[19] HU J,ZHANG G,ZHU Q,et al.A self-driven mechanical ventilated solar air collector.Design and experimental study[J].Energy,2019,189:116287.
[20] REMUND J,MÜLLER S,KUNZ S,et al.Meteonorm handbook part I:software[Z/CD].Bern:Meteotest,2014:12- 14.
[21] KLEIN S A,BECKMAN W A,MITCHELL J W,et al.A transient system simulation program[Z/CD].Madison:University of Wisconsin-Madison,2007:47- 49.
Modelling and simulation analysis of a constant temperature self-driven collector
Abstract: In this paper, a constant temperature self-driven solar air collector(CTSD-SAC) is proposed, which is modeled and simulated by TRNSYS16.1. The simulation is based on four groups of typical meteorological parameters in Qinhuangdao city in summer. Using the single-factor analysis method of control variables, the operation characteristics of CTSD-SAC under different set temperature conditions are discussed, and the influence of the built-in PV board(solar panel) area on the performance of CTSD-SAC is analysed. The results show that there is a non-linear relationship between the flow rate decrease of CTSD-SAC and the set temperature. Both solar irradiance and outdoor temperature affect the outlet flow of CTSD-SAC, and the influence of outdoor temperature is more significant, but the effect on the photothermal photoelectrical efficiency of the system is not obvious, which reflects the stability of CTSD-SAC performance. The analysis shows that when the PV board area increases by 0.1 m2, the photothermal efficiency decreases by 10%. Through PID control, the steady-state error of collector outlet temperature is less than 2.11%, and the rising time is less than 15 min.
Keywords: solar collector; temperature control; single factor analysis; PID control; photothermal efficiency; photoelectrical efficiency; self-driven;
671
0
0