张家口奥体中心游泳馆钢结构屋盖提升方案对比研究

引用文献:

陈耀华. 张家口奥体中心游泳馆钢结构屋盖提升方案对比研究[J]. 建筑结构,2023,48(10):31-39,96.

CHEN Yaohua. Comparative study on lifting schemes of steel structure roof of Zhangjiakou Olympic Sports Center Natatorium[J]. Building Structure,2023,48(10):31-39,96.

作者:陈耀华
单位:中铁二十局集团第二工程有限公司
摘要:张家口奥体中心游泳馆钢结构屋盖提升方案基于沿东西中轴线对称分布原则,通过改变分区、提升架的数量及布置位置,设置了三种提升方案。为研究三种提升方案的可行性与合理性,对每种提升方案各阶段提升进行全过程跟踪模拟。对比分析了三种提升方案的节点竖向位移、支座反力和杆件应力比等,并研究提升不同步性对结构的影响。结果表明,三种提升方案中90%以上杆件的应力比集中于0~0.4范围内;刚度较大的混凝土核心筒在提升过程参与受力,能够提高上部网架、提升架和下部混凝土结构在提升阶段的安全储备;通过合理地布置提升吊点,选用合适的额定提升力的提升设备,可避免在提升过程中出现较大的因提升不同步造成的位移差,且单点出现最大提升力时不会影响网架的正常提升和造成网架损伤。对比分析的三种提升方案均具有可行性,且方案三相对更为合理。
关键词:张家口奥体中心;大跨度钢结构屋盖;提升方案;提升不同步;有限元分析;
作者简介:陈耀华,学士,高级工程师,主要从事工程结构施工技术研究,Email:353813817@qq.com。
基金:中铁二十局集团B类科研课题(YF2002FJ01B)“大跨度钢结构网架屋盖施工技术研究”。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 蒋永扬,袁国平,於国飞.温州奥体中心体育馆提升施工技术关键参数分析[J].工业建筑,2016,46(7):167-172.
[2] 王涛.大跨空间钢结构整体提升施工关键技术研究[D].北京:北京建筑大学,2013.
[3] 蔡俊.大跨度钢网架结构整体提升施工关键技术应用研究[D].广州:华南理工大学,2016.
[4] 郭彦林,王永海,刘学武,等.首都国际机场A380机库屋盖整体提升一体化建模分析[J].工业建筑,2007,37(9):35-40,15.
[5] 游大江,乔聚甫.首都机场A380机库屋盖整体提升施工技术[J].施工技术,2008,37(5):73-74,85.
[6] ZHENG J,HAO J P,ZHONG W H.The mechanics analysis and research of multi-suspension-centers integral lifting technology for long-span steel roof[J].Applied Mechanics and Materials,2012,170/171/172/173:3194-3198.
[7] 陈明,郑波.某超高层建筑不规则钢结构整体提升吊点布置研究[J].施工技术,2015,44(20):36-39.
[8] 郭小农,邱丽秋,罗永峰,等.大跨度屋盖钢结构拆撑过程模拟分析的约束方程法[J].应用数学和力学,2013,34(9):986-994.
[9] 邱德隆,李久林,杨俊峰,等.国家体育场钢结构支撑卸载分析[J].施工技术,2006,35(12):32-35.
[10] 刘学武,郭彦林,郭宇飞.千斤顶单元法在大跨度钢屋盖拆撑过程数值模拟中的应用[J].施工技术,2010,39(8):24-28,33.
[11] 郑江,郝际平,王宏,等.大跨屋盖多点整体提升过程的力学形体研究[J].建筑结构,2009,39(1):83-87.
[12] ZIEMIAN C W,ZIEMIAN R D.Steel benchmark frames for structural analysis and validation studies:finite element models and numerical simulation data[J].Data in Brief,2021,39:107564.
[13] TIAN L M,HAO J P,WEI J P,et al.Integral lifting simulation of long-span spatial steel structures during construction[J].Automation in Construction,2016,70:156-166.
[14] 高雷雷.高空钢结构连廊整体提升关键施工技术[J].施工技术,2014,43(2):38-41.
[15] 包建聪,乔聚甫,路克宽.大屋盖钢结构整体提升点位的研究与应用[J].钢结构,2005,20(5):72-74.
[16] 空间网格结构技术规程:JGJ 7—2010[S].北京:中国建筑工业出版社,2010.
[17] 田黎敏,郝际平,李存良,等.西安东航维修基地新机库钢屋盖结构整体提升若干关键技术研究[J].建筑结构,2015,45(5):54-58,68.
[18] 姜帅臣.大跨度空间钢结构关键施工力学分析与监测[D].合肥:合肥工业大学,2019.
[19] 郭彦林,缪友武,娄俊杰,等.澳门综合体育馆主桁架整体提升及提升塔架分析[J].建筑结构学报,2005,26(1):17-24.
Comparative study on lifting schemes of steel structure roof of Zhangjiakou Olympic Sports Center Natatorium
CHEN Yaohua
(No.2 Engineering Corporation Limited of CR20)
Abstract: Based on the principle of symmetrical distribution along the east-west central axis, the lifting scheme of the steel structure roof of Zhangjiakou Olympic Sports Center Natatorium has set up three lifting schemes by changing the zoning, the number of lifting frames and the layout position. In order to study the feasibility and rationality of the three lifting schemes, a full process tracking simulation was conducted for each lifting scheme at each stage. The vertical displacement of the nodes, the reaction force of the supports, and the stress ratio of the members of the three lifting schemes were compared and analyzed, and the impact of lifting asynchrony on the structure was studied. The results show that more than 90% of the rod stress ratios in the three lifting schemes are concentrated in the range of 0 to 0.4. The participation of high rigid concrete core tubes in the lifting process can improve the safety reserve of upper grid structures, lifting frames and lower concrete structures during the lifting stage. By reasonably arranging lifting points and selecting suitable lifting equipment with rated lifting force, it is possible to avoid large displacement differences caused by unsynchronized lifting during the lifting process, and the occurrence of maximum lifting force at a single point will not affect the normal lifting of the grid and cause damage to the grid. The three lifting schemes compared and analyzed are feasible, and the three-phase pair of the schemes is more reasonable.
Keywords: Zhangjiakou Olympic Sports Center; large span steel structure roof; lifting scheme; lifting asynchrony; finite element analysis
490 0 0
文字:     A-     A+     默认 取消