“双碳”目标下制氢、氢能实验室防爆设计探讨

引用文献:

黄生云 夏聪和 吕行 李晅. “双碳”目标下制氢、氢能实验室防爆设计探讨[J]. 暖通空调,2023,48(6).

Huang Shengyun Xia Conghe Lü Xing Li Xuan. Discussion on explosion-proof design of hydrogen production and hydrogen energy laboratories under goal of “double carbon”[J]. build,2023,48(6).

作者:黄生云 夏聪和 吕行 李晅
单位:中国建筑科学研究院有限公司 科进柏诚工程技术北京)有限公司 中国建筑技术集团有限公司
摘要:氢能源作为清洁能源对“双碳”目标的实现具有重大意义,氢气作为极具爆炸危险性的气体,其防爆设计尤为值得关注。本文结合实际项目,从制氢、氢能实验室的建设条件、泄压面积及电气与通风措施等方面探讨了其防爆设计方案,供其他氢能实验室工程防爆设计参考。
关键词:氢气清洁能源制氢实验室防爆设计泄压面积机械通风局部通风
作者简介:黄生云,男,1980年生,硕士研究生,高级工程师,副总工程师,100013北京市北三环东路30号,E-mail:huangshy@cabr-design.com;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 公安部天津消防研究所,公安部四川消防研究所.建筑设计防火规范:GB 50016—2014[S].2018年版.北京:中国计划出版社,2018:32-33,127,412-441.

[2] 中国电子工程设计院.氢气站设计规范:GB 50177—2005[S].北京:中国计划出版社,2005:5-7,17-19,25,43.

[3] 中国寰球工程公司.爆炸危险环境电力装置设计规范:GB 50058—2014[S].北京:中国计划出版社,2014:7-10.

[4] 中国联合工程有限公司.锅炉房设计标准:GB 50041—2020[S].北京:中国计划出版社,2020:55,61.

[5] 公安部四川消防研究所.建筑防烟排烟系统技术标准:GB 51251—2017[S].北京:中国计划出版社,2017:11.

[6] Technical Committee on Explosion Protection Systems.Standard on explosion prevention systems:NFPA 69-2014[S].Quincy:National Fire Protection Association,2016:13.

[7] Technical Committee on Explosion Protection Systems.Standard on explosion protection by deflagration venting:NFPA 68-2018[S].Quincy:National Fire Protection Association,2018:15-19,78-80.

[8] 中国建筑科学研究院.民用建筑供暖通风与空气调节设计规范:GB 50736—2012[S].北京:中国建筑工业出版社,2012:35.

[9] 中国有色工程有限公司,中国恩菲工程技术有限公司.工业建筑供暖通风与空气调节设计规范:GB 50019—2015[S].北京:中国计划出版社,2015:42.

[10] 中科院建筑设计研究院有限公司.科研建筑设计标准:JGJ 91—2019[S].北京:中国建筑工业出版社,2019:22-23,74-75.

[11] BURKE M P,CHAOS M,JU Y,et al.Comprehensive H2/O2 kinetic model for high-pressure combustion[J].International journal of chemical kinetics,2012,44(7):444-474.

[12] TSE S D,ZHU D L,LAW C K.Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres[C]//Proceedings of the 28th Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,2000:1793-1800.

[13] KÉROMNÈS A,METCALFE W K,HEUFER K A,et al.An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures[J].Combustion and flame,2013,160(6):995-1011.

[14] DOWDY D R,SMITH D B,TAYLOR S C,et al.The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen-air mixtures[C]//Twenty-third Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,1990:325-332.

[15] KOROLL G W,KUMAR R K,BOWLES E M.Burning velocities of hydrogen-air mixtures[J].Combustion and flame,1993,94(3):330-340.

[16] IIJIMA T,TAKENO T.Effects of temperature and pressure on burning velocity[J].Combustion and flame,1986,65(1):35-43.

[17] VAGELOPOULOS C M,EGOLFOPOULOS F N,LAW C K.Further considerations on the determination of laminar flame speeds from stretched flames[C]//Proceedings of the 25th Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,1995:1341-1347.

[18] KWON O C,FAETH G M.Flame/stretch interactions of premixed hydrogen-fueled flames:measurements and predictions[J].Combustion and flame,2001,124(4):590-610.

[19] AUNG K T,HASSAN M I,FAETH G M.Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure[J].Combustion and flame,1997,109(1/2):1-24.

[20] EGOLFOPOULOS F N,LAW C K.An experimental and computational study of the burning rates of ultra-lean to moderately rich H2/O2/N2 laminar flames with pressure variations[C]//Twenty-third Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,1990:333-346.

[21] WU C K,LAW C K.On the determination of laminar flame speeds from stretched flames[C]//Proceedings of the 20th Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,1984:1941-1949.

[22] DAYMA G,HALTER F,DAGAUT P.New insights into the peculiar behavior of laminar burning velocities of hydrogen-air flames according to pressure and equivalence ratio[J].Combustion and flame,2014,161(9):2235-2241.

[23] DAHOE A E.Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions[J].Journal of loss prevention in the process industries,2005,18(3):152-166.

[24] ZHANG Q,LI D.Comparison of the explosion characteristics of hydrogen,propane,and methane clouds at the stoichiometric concentrations[J].International journal of hydrogen energy,2017,42 (21):14794-14808.

[25] ANDREWS G E,BRADLEY D.Determination of burning velocities:a critical review[J].Combustion and flame,1972,18(1):133-153.

[26] 化工暖通设计技术委员会.化工采暖通风与空气调节设计规范:HG/T 20698—2009[S].北京:中国计划出版社,2010:13.
Discussion on explosion-proof design of hydrogen production and hydrogen energy laboratories under goal of “double carbon”
Huang Shengyun Xia Conghe Lü Xing Li Xuan
(China Academy of Building Research Co., Ltd. WSP Parsons Brinckerhoff (Beijing) Ltd. China Building Technique Group Co., Ltd.)
Abstract: Hydrogen energy as clean energy is of great significance to the realization of the goal of “double carbon”. As a gas with great explosion danger, the explosion-proof design of hydrogen is particularly worthy of attention. Combined with the actual project, this paper discusses the explosion-proof design scheme from the aspects of the construction conditions, pressure relief area, electrical and ventilation measures of hydrogen production and hydrogen energy laboratories, which can be used as a reference for the explosion-proof design of other hydrogen energy laboratory projects.
Keywords: hydrogen; clean energy; hydrogen production; laboratory; explosion-proof design; pressure relief area; mechanical ventilation; local ventilation;
925 0 0
文字:     A-     A+     默认 取消