化石燃料汽车尾气对燃料电池汽车空调系统影响综述

作者:刘开元 王晨华 刘俊杰
单位:天津大学“室内空气环境质量控制”天津市重点实验室
摘要:燃料电池汽车使用氢能为整车提供动力,其中空调系统能耗可占汽车总能耗的33%,化石燃料汽车的尾气将极大地影响燃料电池的供电性能,从而导致空调系统失灵。本文对化石燃料汽车的尾气成分进行了列举与分析,总结了汽车尾气中各类成分对质子交换膜燃料电池的影响与机理、电池性能受损对空调系统的影响,以及几种针对外来污染物的阴极过滤装置。区别于传统汽车,燃料电池汽车空调系统的工作状况与外界空气品质息息相关。
关键词:质子交换膜燃料电池空调系统汽车尾气过滤模块耐受性腐蚀
作者简介:刘开元,男,1999年生,在读硕士研究生;*刘俊杰(通信作者)300072天津市南开区卫津路92号天津大学环境科学与工程学院,E-mail:jjliu@tju.edu.cn;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 沈楠驰,周丙锋,李珊珊,等.2015—2019年天津市大气污染物时空变化特征及成因分析[J].生态环境学报,2020,29(9):1862-1873.

[2] 政府工作报告[EB/OL].[2022-08-01].http://www.gov.cn/zhuanti/2019qglh/2019lhzfgzbg/index.htm.

[3] HUANG W L,DAI J,XIONG L.Towards a sustainable energy future:factors affecting solar-hydrogen energy production in China[J].Sustainable energy technologies and assessments,2022,52:102059.

[4] SCOVELL M D.Explaining hydrogen energy technology acceptance:a critical review[J].International journal of hydrogen energy,2022,47(19):10441-10459.

[5] LU Q,ZHANG B,YANG S C,et al.Life cycle assessment on energy efficiency of hydrogen fuel cell vehicle in China[J].Energy,2022,257:124731.

[6] 王贺武,欧阳明高,李建秋,等.中国氢燃料电池汽车技术路线选择与实践进展[J].汽车安全与节能学报,2022,13(2):211-224.

[7] 王戎,王铁,赵震,等.基于热泵空调的燃料电池汽车整车热管理开发设计[J].重庆理工大学学报(自然科学版),2021,35(1):58-66.

[8] YOKOYAMA A,OSAKA T,IMANISHI Y,et al.Thermal management system for electric vehicles[J].SAE international journal of materials and manufacturing,2011,4(1):1277-1285.

[9] 王晓丹.纯电动客车空调系统参数匹配与设计研究[D].长春:吉林大学,2009:29-35.

[10] KAMBLY K R,BRADLEY T H.Estimating the HVAC energy consumption of plug-in electric vehicles[J].Journal of power sources,2014,259:117-124.

[11] SUZUKI T,ISHII K.Air conditioning system for electric vehicle[C]//SAE International Congress and Exposition,1996:1-8.

[12] 赵举,陈曦.新能源汽车空调系统技术探索[J].低温与超导,2013,41(7):44-48.

[13] 潘淑珍.新能源汽车空调系统分析[J].科技创新导报,2019,16(10):106-107.

[14] 张克润.燃料电池汽车空调系统研究[J].山东工业技术,2014(19):51.

[15] 杨代军,马建新,邬敏忠,等.城市大气污染物对PEMFC性能的影响[J].环境科学与技术,2006,29(4):106-108,114,121.

[16] 陈育彬.新能源汽车电动空调压缩机检修技巧及典型故障三例[J].汽车维修与保养,2021(10):49-54.

[17] 许钦清.纯电动汽车空调系统故障诊断方法研究[D].西安:长安大学,2019:18-23.

[18] 卢军豪,王景松,徐柏兴,等.纯电动汽车用涡旋式压缩机常见故障分析[J].汽车电器,2020(9):33-34.

[19] 王变芳.纯电动汽车空调压缩机不运行故障诊断分析[J].农机使用与维修,2021(7):105-106.

[20] RESHETENKO T,LAUE V,KREWER U,et al.Study of degradation and spatial performance of low Pt-loaded proton exchange membrane fuel cells under exposure to sulfur dioxide in an oxidant stream[J].Journal of power sources,2020,458:228032.

[21] RESHETENKO T,SEROV A,ARTYUSHKOVA K,et al.Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants[J].Journal of power sources,2016,324:556-571.

[22] 周其耀.基于ARM的嵌入式汽车尾气检测系统设计[D].上海:上海师范大学,2015:1-2.

[23] 王都留,燕翔,张少飞,等.汽车尾气中产生一氧化氮的热力学分析[J].中国资源综合利用,2018,36(10):184-186.

[24] KANDIMALLA P,VATTE P,BANDARU C S.Phycoremediation of automobile exhaust gases using green microalgae[J].Environment,development and sustainability,2020,23:1-22.

[25] 李兰冬,章福祥,关乃佳,等.金属-ZSM-5/堇青石整体式催化剂上稀燃汽车尾气的净化[J].催化学报,2006,27(1):41-44.

[26] BARWARI R.Study of air pollutions caused by exhaust gases emitted from gasoline vehicles in Erbil City[J].IOP conference series:materials science and engineering,2021,1105:012053.

[27] 解亮.汽车尾气氮氧化物还原的机理研究[D].大连:大连理工大学,2014:1-10.

[28] 吉江林,赵海光,郑丰,等.法规工况下轻型汽油车氨排放特征[J].环境科学研究,2022,35(5):1176-1182.

[29] 王凯,樊守彬,郭津津,等.北京市机动车尾气中氨气排放特征研究[J].环境工程,2018,36(3):98-101.

[30] BURGARD D A,BISHOP G A,STEDMAN D H.Remote sensing of ammonia and sulfur dioxide from on-road light duty vehicles[J].Environmental science & technology,2006,40(22):7018-7022.

[31] GIERCZAK C A,KRALIK L L,MAUTI A,et al.Measuring NMHC and NMOG emissions from motor vehicles via FTIR spectroscopy[J].Atmospheric environment,2017,150:425-433.

[32] 程平,储焰南,张为俊,等.选择离子流动管质谱对汽车尾气成分的分析[J].分析化学,2004,32(1):113-118.

[33] 章程,黄小强,方华.气相色谱对汽车尾气成分的检测[J].低温与特气,2015,33(3):31-33.

[34] 王伯光,邵敏,张远航,等.机动车排放中挥发性有机污染物的组成及其特征研究[J].环境科学研究,2006,19(6):75-80.

[35] 艾宏志,周围.气相色谱质谱联用分析机动车尾气中的有机成分[J].光谱实验室,2010(3):839-843.

[36] ZHANG Y,YANG W,SIMPSON I,et al.Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control:case study in a busy urban tunnel in south China[J].Environmental pollution,2018,233:806-819.

[37] LUO Y B,CHEN J X,LIU W W,et al.Pollutant concentration measurement and emission factor analysis of highway tunnel with mainly HGVs in mountainous area[J].Tunnelling and underground space technology incorporating trenchless technology research,2020,106:103596.

[38] KARŞ M B,BERBERLER E,BERBERLER T,et al.Correction and source apportionment of vehicle emission factors obtained from Bolu Mountain Highway Tunnel,Turkey[J].Atmospheric pollution research,2020,11(12):2133-2141.

[39] FANG X,WU L,ZHANG Q,et al.Characteristics,emissions and source identifications of particle polycyclic aromatic hydrocarbons from traffic emissions using tunnel measurement[J].Transportation research part d:transport and environment,2019,67:674-684.

[40] GOKCE H B,ARIOGGLU E,COPTY N K,et al.Exterior air quality monitoring for the Eurasia Tunnel in Istanbul,Turkey[J].Science of the total environment,2020,699:134312.

[41] JIN B,ZHU R,MEI H,et al.Volatile organic compounds from a mixed fleet with numerous E10-fuelled vehicles in a tunnel study in China:emission characteristics,ozone formation and secondary organic aerosol formation[J].Environmental research,2021,200:111463.

[42] LEI Y,WANG Z,XU H,et al.Characteristics and health risks of parent,alkylated,and oxygenated PAHs and their contributions to reactive oxygen species from PM2.5 vehicular emissions in the longest tunnel in downtown Xi’an,China[J].Environmental research,2022,212:113357.

[43] LUO Y,CHEN J,LIU W,et al.Pollutant concentration measurement and emission factor analysis of highway tunnel with mainly HGVs in mountainous area[J].Tunnelling and underground space technology,2020,106:103591.

[44] XU H,FENG R,WANG Z,et al.Environmental and health risks of VOCs in the longest inner–city tunnel in Xi’an,Northwest China:implication of impact from new energy vehicles[J].Environmental pollution,2021,282:117057.

[45] DENG B,CHEN Y,DUAN X,et al.Dispersion behaviors of exhaust gases and nanoparticle of a passenger vehicle under simulated traffic light driving pattern[J].Science of the total environment,2020,740:140090.

[46] CHAN T L,DONG G,CHEUNG C S,et al.Monte Carlo simulation of nitrogen oxides dispersion from a vehicular exhaust plume and its sensitivity studies[J].Atmospheric environment,2001,35:6117-6127.

[47] UHRNER U,LÖWIS S V,VEHKAMÄKI H,et al.Dilution and aerosol dynamics within a diesel car exhaust plume:CFD simulations of on-road measurement conditions[J].Atmospheric environment,2007,41:7440-7461.

[48] MEN Y,LAI Y,DONG S,et al.Research on CO dispersion of a vehicular exhaust plume using Lattice Boltzmann Method and Large Eddy Simulation[J].Transportation research part d,2017,52:202-214.

[49] FU J,HOU M,DU C,et al.Potential dependence of sulfur dioxide poisoning and oxidation at the cathode of proton exchange membrane fuel cells[J].Journal of power sources,2008,187:32-38.

[50] GARSANY Y,BATURINA O A,SWIDER-LYONS K E.Impact of sulfur dioxide on the oxygen reduction reaction at Pt/Vulcan carbon electrocatalysts[J].Journal of the electrochemical society,2007,154:670-675.

[51] SHI W,YI B,HOU M,et al.Hydrogen sulfide poisoning and recovery of PEMFC Pt-anodes[J].Journal of power sources,2006,165:814-818.

[52] DORN S,ZHAI Y,ROCHELEAU R.The impact of SO2 on the degradation of MEA components in PEMFCs[J].ECS transactions,2010,28(23):183-191.

[53] GOULD B D,BATURINA O A,SWIDER-LYONS K E.Deactivation of Pt/VC proton exchange membrane fuel cell cathodes by SO2,H2S and COS[J].Journal of power sources,2008,188:89-95.

[54] ANGELO M,ST-PIERRE J.The effect of common airborne impurities and mixtures on PEMFC performance and durability[J].ECS transactions,2014,64(3):773-788.

[55] BATURINA O A,EPSHTEYN A,NORTHRUP P A,et al.Insights into PEMFC performance degradation from HCl in air[J].Journal of the electrochemical society,2011,158:1198-1205.

[56] 李雁飞.阳极H2S污染物对质子交换膜燃料电池性能的影响[D].北京:北京交通大学,2010:18-22.

[57] LIU T,WANG X,WANG B,et al.Emission factor of ammonia (NH3) from on-road vehicles in China:tunnel tests in urban Guangzhou[J].Environmental research letters,2014,9(6):064027.

[58] 连丽,孙红,王瑞宙,等.空气中NH3杂质对PEM燃料电池性能的影响[J].电源技术,2017,41(4):562-564.

[59] NAGAHARA Y,SUGAWARA S,SHINOHARA K.The impact of air contaminants on PEMFC performance and durability[J].Journal of power sources,2008,182(2):422-428.

[60] MOHTADI R,LEE W K,ZEE J W V.Assessing durability of cathodes exposed to common air impurities[J].Journal of power sources,2004,138(1):216-225.

[61] 李静.阴极二氧化硫和氨气对燃料电池的性能影响研究[D].武汉:武汉理工大学,2009:35-43.

[62] SOTO H J,LEE W K,ZEE J W V,et al.Effect of transient ammonia concentrations on PEMFC performance[J].Electrochemical and solid state letters,2003,6(7):133-135.

[63] 杨代军.大气污染物对质子交换膜燃料电池性能影响的研究[D].上海:华东理工大学,2006:70-82.

[64] ZHAI Y,ST-PIERRE J.Acetonitrile contamination in the cathode of proton exchange membrane fuel cells and cell performance recovery[J].Applied energy,2019,242:239-247.

[65] ZHAI Y,ST-PIERRE J.Impact of operating conditions on the acetylene contamination in the cathode of proton exchange membrane fuel cells[J].Journal of power sources,2017,372:134-144.

[66] RESHETENKO T V,ST-PIERRE J.Study of acetylene poisoning of Pt cathode on proton exchange membrane fuel cell spatial performance using a segmented cell system[J].Journal of power sources,2015,287:401-415.

[67] RESHETENKO T V,ST-PIERRE J.Study of the acetonitrile poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system[J].Journal of power sources,2015,293:929-940.

[68] RESHETENKO T V,ST-PIERRE J.Effects of propylene,methyl methacrylate and isopropanol poisoning on spatial performance of a proton exchange membrane fuel cell[J].Journal of power sources,2018,378:216-224.

[69] JING F,HOU M,SHI W,et al.The effect of ambient contamination on PEMFC performance[J].Journal of power sources,2006,166(1):172-176.

[70] HONG L,YAHAO S,XIAO X,et al.Structure simulation design of a cathode air filter for SO2 contamination on a 7 kW fuel cell sightseeing vehicle[J].International journal of hydrogen energy,2022,47(8):5521-5530.

[71] KENNEDY D M,CAHELA D R,ZHU W H,et al.Fuel cell cathode air filters:methodologies for design and optimization[J].Journal of power sources,2007,168(2):391-399.

[72] 职远,张丁超,刘俊杰,等.半导体晶圆厂洁净室气态化学污染物测试及污染源分析[J].暖通空调,2021,51(3):46-50.

[73] ZHI Y,LIU J.Analysis of chemical filter performance and activated carbon microstructure at low concentration[J].Building and environment,2020,169(C):106563-106563.

[74] HEO K J,NOH J W,LEE B U,et al.Comparison of filtration performance of commercially available automotive cabin air filters against various airborne pollutants[J].Building and environment,2019,161:106272.
Review on influence of fossil fuel vehicle exhaust on air conditioning systems of fuel cell vehicles
Liu Kaiyuan Wang Chenhua Liu Junjie
(Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin University)
Abstract: Fuel cell vehicles use hydrogen energy to provide power for the whole vehicle, in which the energy consumption of the air conditioning system can account for 33% of the total energy consumption of the vehicle. The exhaust gas of fossil fuel vehicles will greatly affect the power supply performance of the fuel cell, resulting in the failure of the air conditioning system. This paper enumerates and analyses the exhaust gas components of fossil fuel vehicles, and summarizes the influence and mechanism of various components in the exhaust gas on proton exchange membrane fuel cells, the influence of battery performance damage on the air conditioning system, and several kinds of cathode filter devices for foreign pollutants. Different from the traditional automobile, the working condition of fuel cell vehicle air conditioning system is closely related to the external air quality.
Keywords: proton exchange membrane fuel cell; air conditioning system; vehicle exhaust; filter module; tolerance; corrosion;
603 0 0
文字:     A-     A+     默认 取消