流道内错列倒置柔性体运动及强化传热分析

作者:种叶龙 杨茉
单位:上海理工大学 上海建桥学院
摘要:以换热器流道内强化换热为目的,建立了带有错列倒置柔性扰流体的矩形流动换热模型,通过任意拉格朗日-欧拉(ALE)方法模拟研究了不同抗弯强度和布置间距的柔性扰流体对通道内流动和换热的影响。结果表明:不同抗弯强度的柔性体在相同流动工况下呈现出偏置、大振幅拍动和偏转拍动3种运动模式;与不设置扰流体的流动通道相比,柔性扰流体的3种拍动模式分别可使流动通道的平均Nu提高40.4%~70.6%、45.1%~83.5%和38.3%~75.1%;增大错列柔性体的竖向间距也可提高通道平均Nu,当量纲一竖向间距为0.7且柔性体处于大振幅拍动模式时,通道平均Nu达到最大值,比无扰流体通道提高85.8%,热效率系数提高6.5%。
关键词:换热器流道柔性体强化换热布置间距运动模式
作者简介:种叶龙,男,1998年生,硕士研究生,助理工程师;*杨茉(通信作者)201306上海市浦东新区上海建桥学院,E-mail:yangm@usst.edu.cn;
基金:国家自然科学基金资助项目(编号:51736007);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 王冠军,王炎峰,朱丽星,等.微通道换热器在湿工况下的性能研究[J].暖通空调,2022,52(11):138-141.

[2] 白韡,曹昊敏,燕子腾,等.管排结构不规则的空调器用翅片管换热器性能仿真[J].暖通空调,2022,52(12):52-58.

[3] BISWAS G,CHATTOPADHYAY H,SINHA A.Augmentation of heat transfer by creation of streamwise longitudinal vortices using vortex generators[J].Heat transfer engineering,2012,33(4/5):406-424.

[4] 赵波,廖达雄,黄知龙,等.翅片椭圆管偏斜角对风洞换热器性能的影响[J].暖通空调,2020,50(11):120-124,112.

[5] 付文涛,卢军,李永财,等.管道相对表面积对壳管式换热器流动与传热的影响[J].暖通空调,2018,48(10):93-97.

[6] ALLEGOS R K B,SHARMA R N.Flags as vortex generators for heat transfer enhancement:gaps and challenges[J].Renewable and sustainable energy reviews,2017,76:950-962.

[7] 金尧,李红旗.微细通道换热器空气侧性能的模拟及优化分析[J].暖通空调,2010,40(4):141-144.

[8] HUANG H,WEI H,LU X Y.Coupling performance of tandem flexible inverted flags in a uniform flow[J].Journal of fluid mechanics,2018,837:461-476.

[9] TANG C,LIU N S,LU X Y.Dynamics of an inverted flexible plate in a uniform flow[J].Physics of fluids,2015,27(7):073601.

[10] KUMAR V,GARG H,SHARMA G,et al.Harnessing flow-induced vibration of a D-section cylinder for convective heat transfer augmentation in laminar channel flow[J].Physics of fluids,2020,32(8):083603.

[11] SHOELE K,MITTAL R.Computational study of flow-induced vibration of a reed in a channel and effect on convective heat transfer[J].Physics of fluids,2014,26(12):127103.

[12] 江鑫宇,杨茉.通道中簧片流固耦合振荡的强化传热[J].动力工程学报,2020,40(4):317-322.

[13] SHI J,HU J,SCHAFER S R,et al.Numerical study of heat transfer enhancement of channel via vortex-induced vibration[J].Applied thermal engineering,2014,70(1):838-845.

[14] YU Y,LIU Y,CHEN Y.Vortex dynamics and heat transfer behind self-oscillating inverted flags of various lengths in channel flow[J].Physics of fluids,2018,30(4):045104.

[15] LEE J B,PARK S G,SUNG H J.Heat transfer enhancement by asymmetrically clamped flexible flags in a channel flow[J].International journal of heat and mass transfer,2018,116:1003-1015.

[16] ALI S,MENANTEAU S,HABCHI C,et al.Heat transfer and mixing enhancement by usingmultiple freely oscillating flexible vortex generators[J].Applied thermal engineering,2016,105:276-289.

[17] 田程.热通道内弹性体无源振荡强化传热传质分析[D].上海:上海理工大学,2022:17-18.

[18] TUREK S,HRON J.Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[M]//BUNGARTZ H J,SCHÄFER M.Fluid-structure interaction.Heidelberg:Springer,2006:371-385.
Analysis of motion and heat transfer enhancement of staggered inverted flexible bodies in flow channels
Chong Yelong Yang Mo
(University of Shanghai for Science and Technology Shanghai Jian Qiao University)
Abstract: For the purpose of heat transfer enhancement in the flow channel of heat exchangers, a rectangular flow heat transfer model with staggered inverted flexible disturbing bodies is established, and the effects of flexible disturbing bodies with different bending strengths and arrangement spacing on the flow and heat transfer in the flow channel are simulated by arbitrary Lagrangian-Euler(ALE) method. The results show that the flexible body with different bending strengths presents three motion modes under the same flow condition: bias, large amplitude flapping and deflection flapping. Compared with the flow channel without disturbing bodies, the three flapping modes of flexible disturbing bodies can increase the average Nu in the flow channel by 40.4%-70.6%, 45.1%-83.5% and 38.3%-75.1%, respectively. Increasing the vertical spacing of the staggered flexible bodies can also increase the average Nu in the flow channel. When the dimensionless vertical spacing is 0.7 and the flexible bodies are in large amplitude flapping mode, the average Nu in the flow channel reaches the maximum value, which is 85.8% higher than that in the non-disturbed flow channel, and the thermal efficiency coefficient is 6.5% higher than that in the non-disturbed flow channel.
Keywords: heat exchanger; flow channel; flexible body; heat transfer enhancement; arrangement spacing; motion mode;
592 0 0
文字:     A-     A+     默认 取消