高烈度区某RC框架-剪力墙结构减震前后抗震韧性对比研究

引用文献:

解琳琳 许天赐 安楠 刘谦敏 王心宇 李伟. 高烈度区某RC框架-剪力墙结构减震前后抗震韧性对比研究[J]. 建筑结构,2023,48(03):34-40.

XIE Linlin XU Tianci AN Nan LIU Qianmin WANG Xinyu LI Wei. Comparative study on seismic resilience of a RC frame-shear wall structure before and after seismic reduction in high seismic region[J]. Building Structure,2023,48(03):34-40.

作者:解琳琳 许天赐 安楠 刘谦敏 王心宇 李伟
单位:北京建筑大学土木与交通工程学院 北京建筑大学大型多功能振动台阵实验室 北京市建筑设计研究院有限公司 江苏力汇振控科技有限公司
摘要:以位于8度区(0.30g)的某13层RC框架-剪力墙结构作为研究对象,基于《建筑抗震韧性评价标准》(GB/T 38591—2020),对其减震前后的抗震韧性水准进行了对比分析。结果表明:结构在减震前的抗震韧性等级为零星,修复时间控制了韧性等级,加速度敏感型非结构构件的修复费用主导了总修复费用,结构构件的修复时间主导了总修复时间;采用黏滞阻尼器减震技术后,结构在大震下最大层间位移角和楼面绝对加速度峰值分别降低了23.5%和16.8%;结构构件的损伤得到控制,从而有效控制了结构构件的修复时间,结构抗震韧性等级提升至一星。虽然减震后的楼面绝对加速度也得到了较好的控制,但仍高于加速度敏感型非结构构件的损伤阈值,导致减震前后该类构件的修复时间和修复费用变化不大。
关键词:高烈度区;RC框架-剪力墙结构;黏滞阻尼器;减震结构;损伤阈值;抗震韧性评价;
作者简介:解琳琳,博士,教授,主要从事高层减隔震和地震韧性研究,Email:xielinlin@bucea.edu.cn。刘谦敏,硕士,高级工程师,主要从事结构减隔震设计研究,Email:liuqianmin@biad.com.cn。
基金:国家自然科学基金(52178268);建大英才项目(JDYC20200306)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] Seismic performance assessment of buildings volume 1:methodology:FEMA P-58-1 [S].Washington,D.C.:Federal Emergency Management Agency,2012.
[2] ALMUFTI I,WILLFORD M.REDi rating system:resilience-based earthquake design initiative for the next generation of buildings[R].London:Arup Group,2013.
[3] 建筑抗震韧性评价标准:GB/T 38591—2020[S].北京:中国标准出版社,2020.
[4] 王啸霆,潘鹏,王涛,等.基于《建筑抗震韧性评价标准》的算例分析[J].建筑结构,2020,50(16):57-63.
[5] 建筑抗震设计规范:GB 50011—2010[S].2016 年版.北京:中国建筑工业出版社,2016.
[6] 薛荣刚,黄丽红,宫海军,等.基于建筑抗震韧性评价标准的某教学楼抗震韧性评价分析[J].建筑结构,2021,51(1):60-65.
[7] 卢啸.钢筋混凝土框架核心筒结构地震韧性评价[J].建筑结构学报,2021,42(5):55-63.
[8] YANG CANTIAN,XIE LINLIN,LI AIQUN,et al.Resilience-based retrofitting of existing urban RC-frame buildings using seismic isolation[J].Earthquake Engineering and Engineering Vibration,2020,19(4):839-853.
[9] 任军宇,潘鹏,王涛,等.GB/T 38591—2020《建筑抗震韧性评价标准》解读[J].建筑结构学报,2021,42(1):48-56.
[10] 建筑消能减震技术规程:JGJ 297—2013[S].北京:中国建筑工业出版社,2013.
Comparative study on seismic resilience of a RC frame-shear wall structure before and after seismic reduction in high seismic region
XIE Linlin XU Tianci AN Nan LIU Qianmin WANG Xinyu LI Wei
(School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture Multi-Functional Shaking Tables Laboratory, Beijing University of Civil Engineering and Architecture Beijing Institute of Architectural Design Jiangsu Forceset Vibration Control Technology Co., Ltd.)
Abstract: A RC frame-shear wall structure with 13 stories located in the 8 degree(0.30g) region was selected as the research object, based on Standard for seismic resilience assessment of buildings(GB/T 38591—2020),the seismic resilience level of the structure before and after seismic reduction were compared and analyzed. The results indicate that the seismic resilience level of the structure before seismic reduction is zero star. The resilience level is controlled by repair time, the repair cost of acceleration-sensitive non-structural components(ASNSCs) dominates the total repair cost, the repair time of structural components dominates the total repair time. After using the viscous damper seismic reduction technology, the maximum inter-story drift angle and floor absolute acceleration peak value of the structure under rare earthquake are reduced by 23.5% and 16.8% respectively. The damage of structural components is controlled, so that the repair time of structural members is effectively controlled, and the seismic resilience level of the structure is improved to one star. Although the floor absolute acceleration after seismic reduction is also well controlled, it remains much larger than the damage threshold of ASNSCs, resulting in slight change of the repair time and repair cost of such components before and after seismic reduction.
Keywords: high seismic region; RC frame-shear wall structure; viscous damper; seismic reduction structure; damage threshold; seismic resilience assessment
596 0 0
文字:     A-     A+     默认 取消